期刊文献+

锯齿形石墨烯带(7-ZGNR)输运性质的研究 被引量:2

Research on Transport Properties of Zigzag-Graphene Nanoribbon(7-ZGNR)
下载PDF
导出
摘要 采用基于密度泛函方法的非平衡格林函数,对无限长锯齿形石墨烯带(7-ZGNR)的态密度和输运性质进行了理论计算和模拟。结果表明,此石墨烯带的电子输运系数和其态密度有关,波峰与波谷分别相对应。此外,输运曲线近似在费密能级两边对称。由于宽度只有10nm左右,石墨烯带受量子效应的影响,对不同本征能量的电子的输运系数呈整数变化,相应的电导呈现阶跃式变化,其值均为量子电导G0的整数倍。另外,给石墨烯带加以0~1.5V的偏压,计算I-V曲线。结果发现,此石墨烯带在0~1.5V内的I-V曲线接近于线性,考虑到其带隙值较小,因此可认为7-ZGNR是金属型的锯齿形石墨烯带。采用类似的方法,可以判定其他石墨烯带的输运性质。 Non-equilibrium Green's functions method based on DFT was adopted to calculate the density of states and transmission properties of a infinite zigzag-graphene nanoribbon (7-ZGNR). The results show that the electron transport coefficient of the graphene nanoribbon is related to the density of states, and corresponds with the peaks and troughs respectively. In addition, the transmission curve presents approximately centro-symmetric at the both sides of feimi level. Due to the only 10 nm width of the graphene nanoribbon and the affect of quantum effects, the graphene nanoribbon shows integral changes to electron transport coefficient of different eigen energies and step-type changes to corresponding conductance, the conductance value is the integral multiple of the quantum conductance Go. Furthermore, I-V curve was calculated by adding 0 - 1.5 V bias to the graphene nanoribbon. The result shows that the graphene nanoribbon is aooroximately linear in 0- 1.5 V. Considering that the energy gap is smaller, the 7-ZGNR can be considered as a metal zigzag-graphene nanoribbon. The transmission properties of other graphene nanorib- bons can be found out using this method.
出处 《微纳电子技术》 CAS 北大核心 2009年第8期463-466,共4页 Micronanoelectronic Technology
基金 国家重点基础研究发展规划(973计划)项目(2003CB716204) 教育部国际合作研究项目(20060360563) 江苏省自然科学基金项目(BK2008097) 南京大学固体微结构物理国家重点实验室开放课题(M06008)
关键词 非平衡格林函数 锯齿形石墨烯纳米带 输运性质 态密度 伏安曲线 non-equilibrium Green functions zigzag-graphene nanoribbon transmission proper- ties density of states I-V curve
  • 相关文献

参考文献21

  • 1NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306 (5696): 666-669.
  • 2GEIM A K, NOVOSELOV K S. The rise of graphene [J].Nature Materials, 2007, 6 (3):183-191.
  • 3BERGER C, SONG Z, LI X B, et aI. Electronic confinement and coherence in patterned epitaxial graphene[J].Science, 2006, 312 (5777): 1191-1196.
  • 4OHTA T, BOSTWICK A, SEYLLER T, et al. Controlling the electronic structure of bilayer graphene[J]. Science, 2006, 313 (5789): 951-954.
  • 5HEERSCHE H B, JARILLO H P D, OSTINGA J B, et al. Bipolar supercurrent in graphene[J].Nature, 2007, 446 (7131): 56-59.
  • 6HUARD B, SULPIZIO J A, STANDER N, et al. Transport measurements across a tunable potential barrier in graphene[J].Physic Review Letters, 2007, 98 ( 23 ) : 236803. 1- 236803. 3.
  • 7WILLIAMS J R, DICARLO L C, MACUS C M. Quantum hall effect in a gate-controlled p-n junction of graphene [J]. Science, 2007, 317 (5838): 638-641.
  • 8KATSNELSON M I, NOVOSELOV K S, GEIM A K. Chiral tunnelling and the Klein paradox in graphene [J]. Nature Physics, 2006, 2 (9): 620-625.
  • 9CHEIANOV V V, FAL'KO V I, ALTSHULER B L. The focusing of electron flow and a veselago lens in graphene p-n junctions [J]. Science, 2007, 315 (5816): 1252-1255.
  • 10SCHEDIN F, GEIM A K, MOROZOV S V, et al. Detection of individual gas molecules adsorbed on graphene [J]. Nature Materials, 2007, 6 (9): 652-655.

同被引文献35

  • 1Novoselov K S,Geim A K,Morozov S V. Electric field effect in atomically thin carbon films[J].Science,2004.666-669.
  • 2Geim A K,Novoselov K S. The rise of graphene[J].Nature Materials,2007,(3):183-191.doi:10.1038/nmat1849.
  • 3Castro Neto A H,Guinea F,Peres N M R. The electronic properties of graphene[J].Reviews of Modern Physics,2009,(1):109-162.doi:10.1103/RevModPhys.81.109.
  • 4Novoselov K S,Geim A K,Morozov S V. Two-dimensional gas of massless Dirac fermions in graphene[J].Nature,2005.197-200.
  • 5Zhang Y B,Tan Y W,Stormer H L. Experimental observation of the quantum Hall effect and Berry' s phase in graphene[J].Nature,2005.201-204.
  • 6Novoselov K S,Jiang Z,Zhang Y. Room-temperature quantum hall effect in graphene[J].Science,2007,(5817):1379-1379.doi:10.1126/science.1137201.
  • 7Wilson M. Electrons in atomically thin carbon sheets behave like massless particles[J].Physics Today,2006,(10):21-23.
  • 8Geim A K. Graphene:Status and prospects[J].Science,2009.1530-1534.
  • 9Fujita M,Wakabayahshi K,Nakada K. Peculiar localized states at zigzag graphite edge[J].J Phys Society Jpn,1996,(07):1920-1923.
  • 10Son Y Wi,Cohen M L,Louie S G. Energy gaps in graphene nanoribbons[J].Physical Review Letters,2006,(21):216803.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部