期刊文献+

关于类似广义Dedekind和S_2(h,m,n,k)的几个恒等式

On some identities of the sum analogous to the generalized Dedekind sum S_2(h,m,n,k)
下载PDF
导出
摘要 利用初等方法研究了类似广义Dedekind和S2(h,m,n,k)的算术性质.借助Bernoulli多项式及三角恒等式,探究了S2(qh,m,n,qk)与S2(h,m,n,k)的关系,以及当p为奇素数时sum from b=0 to (p-1) S2(h+bk,m,n,pk)与S2(h,m,n,k)和S2(ph,m,n,k)的关系,提出并证明了两个恒等式,推广了有关文献的结论. The arithmetic properties for a sum analogous to the generalized Dedekind are studied by using elementary method. With the Bernoulli polynomial and trigonometric identity, the relationship are studied between S2(qh,m,n,qk) andS2(h,m,n,k), ∑b=0^p-1 S2 (h +bk,m,n,pk) and S2 (h,m,n,k) and S2(ph,m,n,k) ,when p is a odd prime . Two identities are given and proved, the conclusions are extended in some references.
作者 王阳 华梦霞
出处 《南阳师范学院学报》 CAS 2009年第6期5-8,共4页 Journal of Nanyang Normal University
基金 南阳市科技局科技计划基金资助项目(2006G0812)
关键词 类似广义Dedekind和S2(h m n k) BERNOULLI多项式 恒等式 sum analogous to the generalized Dedekind and S2 (h, m,n,k) Bernoulli polynomial identity
  • 相关文献

参考文献7

二级参考文献51

  • 1郑志勇.Dedekind和的一个性质[J].数学学报(中文版),1994,37(5):690-694. 被引量:4
  • 2[1]Apostol Tom M.Introduction to Analytic Number Theory[M].New York:Spring-Verlag,1976
  • 3[2]Knopp M.I.Hecke operators and identity for Dedekind Sums.J.Number Theory,1980,12:2~9
  • 4[3]Conrey J.B.,Eric Fransen,Robert Klein and Clayton Scott.Mean values of Dedekind Sums[J].Journal of Number Theory,1996,56:214~226
  • 5[4]Mordell L.J.The Reciprocity Formula for Dedekind Sums[J].Amer.J.Math.,1951,73:593~598
  • 6[5]Zhang Wenpeng.On the Mean Values of Dedekind Sums[J].Jounral de Theorie des Nombes,1996,8:429~442
  • 7[8]Xie Min and Zhang Wenpeng.On the Mean Value of Square of a Generalized Dedekind Sum[J].The Ramanujan Journal.2001,5:227~236
  • 8Hardy G H. On certain series of discontinuous functions connected with the modular functions[J]. Quart J Math,1905, 36: 93--123.
  • 9Zhang Wenpeng. A sum analogous to the dedekind sum and its mean value foumula[J]. Journal of Number Theory, 2001, 89: 1--13.
  • 10Xie Min, Zhang Wenpeng. On the mean value of square of a generalized dedekind sum[J]. The Ramanujan Joural, 2001, 5:227--236.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部