摘要
利用初等方法研究了类似广义Dedekind和S2(h,m,n,k)的算术性质.借助Bernoulli多项式及三角恒等式,探究了S2(qh,m,n,qk)与S2(h,m,n,k)的关系,以及当p为奇素数时sum from b=0 to (p-1) S2(h+bk,m,n,pk)与S2(h,m,n,k)和S2(ph,m,n,k)的关系,提出并证明了两个恒等式,推广了有关文献的结论.
The arithmetic properties for a sum analogous to the generalized Dedekind are studied by using elementary method. With the Bernoulli polynomial and trigonometric identity, the relationship are studied between S2(qh,m,n,qk) andS2(h,m,n,k), ∑b=0^p-1 S2 (h +bk,m,n,pk) and S2 (h,m,n,k) and S2(ph,m,n,k) ,when p is a odd prime . Two identities are given and proved, the conclusions are extended in some references.
出处
《南阳师范学院学报》
CAS
2009年第6期5-8,共4页
Journal of Nanyang Normal University
基金
南阳市科技局科技计划基金资助项目(2006G0812)