期刊文献+

基于支持向量机和转换的错误驱动学习方法的组块识别

SVM-based chunk recognition and transformation-based error-driver learning
下载PDF
导出
摘要 支持向量机在高维特征空间的输入数据上具有较高的泛化性能,能够独立于小范围内的数据维数计算.基于转换的学习方法能自动融合不同类型的知识,所得到的模板可以显示一些语言知识,这些语言知识对于语言学及其他相关研究有重要意义.利用支持向量机和基于转换的错误驱动学习相结合,能够达到较为满意的组块识别效果. The paper presents a method of Chinese chunk recognition based on Support Vector Machines (SVM) and transformation-based error-driven learning. It is well known that SVM is good at achieving high generalization of very high dimensional feature space. SVM can be trained in a high dimensional space with smaller computational cost independent of their dimensionalities. Transformation-based learning method can combine many kinds features and express much knowledge of linguistic which is very important to other research. Using SVM method and Trans- formation-based learning method can combine the advantages and get a satisfaction of identification.
作者 王达 张坤
出处 《南阳师范学院学报》 CAS 2009年第6期68-70,共3页 Journal of Nanyang Normal University
关键词 组块 支持向量机 基于转换的学习 chunking support vector machine transformation-based learning
  • 相关文献

参考文献2

  • 1Abney S. Parsing by chunks [ M ]. //Berwick R, Abney S,Tenny C et al. Principle-Based Parsing. Dordrecht: Kluwer Academic Publishers, 1991:257 - 278.
  • 2李珩,朱靖波,姚天顺.基于SVM的中文组块分析[J].中文信息学报,2004,18(2):1-7. 被引量:50

二级参考文献4

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部