摘要
基于彩色图像的YUV颜色空间和相邻节点间的视角相关性,将同一场景的监控任务分配给3个相关度较大的传感器节点,每个节点仅需处理亮度分量或色度分量.使用深度信息模型,以及基于自适应四叉树分割和分块空间变换的方法,对解码后的亮度和色度分量进行融合,实现监控场景的彩色图像重构.仿真实验结果表明,该方法有效可行,在视频传感器节点存储量、传输量和场景监控质量之间能取得良好的折中.
The monitor task of the same scene was assigned to three highly-correlated video sensor nodes based on YUV color space and the view correlation of adjacent nodes. Each sensor node only needed to take charge of compressing and transmitting luminance or chrominance part. With the proposed depth information model, luminance and chrominance parts were fused using fusion method based on adaptive quadtree partitioning and space transform. And then the color image of the scene was reconstructed. The experimental and simulation results show that our method is effective and feasible. A well tradeoff is achieved between store,transmission cost and scene monitoring quality.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2009年第8期1659-1663,共5页
Acta Electronica Sinica
基金
国家自然科学基金(No.60573141
No.60773041)
国家863高技术研究发展计划(No.2006AA01Z201
No.2006AA01Z219
No.2006AA01Z439)
江苏省高技术研究计划(No.BG2006001)
2006江苏省软件专项
南京市高科技项目(2007软资106)
江苏省博士后基金(No.0801019C)
关键词
多媒体传感器网络
颜色空间
图像融合
四叉树分割
wireless multimedia sensor networks
color space
image fusion
quadtree partitioning