期刊文献+

嵌入法构造线性分组码咬尾网格 被引量:1

An Embedding Method to Construct Tail-Biting Trellises for Linear Block Codes
下载PDF
导出
摘要 给出一种新的咬尾网格构造方法——嵌入法.该方法把一个线性分组码的咬尾网格嵌入到另一个线性分组码的传统网格中,从而很多咬尾网格问题可以转化为传统网格问题.证明每个咬尾网格都可以通过反复使用嵌入法从传统BCJR网格得到.最后讨论在网格中含有1个峰值情形时,采用嵌入法如何将峰值减半. Embedding construction of tail-biting trellises for linear block codes is presented. With the new approach of con- structing tail-biting trellises,most of the study of tail-biting trellises can be converted into that of conventional trellises.It is proved that any minimal tail-biting trellis can be constructed by the recursive process of embedding constructions from the weU-known Bahl-Cocke-Jelinek-Raviv(BCJR)constructed conventional trellises. Fanlhermore, several properties of embedding constructions of tail-biting trellises are discussed. Finally, we give a sufficient condition to reduce the maximum state-complexity of a trellis with one peak.
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第8期1751-1756,共6页 Acta Electronica Sinica
关键词 线性分组码 传统网格 咬尾网格 嵌入法构造 linear block code conventional trellis tail-biting trellis embedding construction
  • 相关文献

参考文献9

  • 1L Bahl, J Cocke, F Jelinek, J Raviv. Optimal decoding of linear codes for minimizing symbol error rate[ J]. IEEE Trans on Information Theory, 1974, IT-20(2) :284 - 287.
  • 2Calderbank, G D Fomey Jr, A Vardy. Minimal tail-biting trellises: The Golay code and more[J].IEEE Trans on Information Theory, 1999,45(5) : 1435 - 1455.
  • 3F Kschischang, V Sorokine. On the trellis structure of block codes[ J]. IEEE Trans on Information Theory, 1995,41 ( 6): 1924- 1937.
  • 4R Koetter, A Vardy. The structure of tail-biting trellises:Minimality and basic principles[ J] .IEEE Tram on Information Theory,2003,49(9) : 1877 - 1901.
  • 5R J McEliece. On the BCJR trellis for linear block codes[J]. IEEE Trans Inform. Theory, 1996,42(4) : 1072- 1092.
  • 6D J Muder. Minimal trellises for block codes[J].IEEE Trans on Information Theory, 1988,34(6):1049- 1053.
  • 7V Nori, P Shankar. Unifying views of tail-biting trellis constmctions for linear block codes[ J]. IEEE Trans on Information Thory, 2006,52(10) :4431 - 4443.
  • 8S Riedel, C Weiss. The Golay convolufional code---Some application aspects[ J]. IEEE Trans Information Theory, 1999,45 (6) :2191 - 2199.
  • 9J Wolf. Efficient maximum-likelihood decoding of linear block codes using a trellis [ J ].IEEE Tram on Information Theory, 1978,24(1) :76 - 80.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部