期刊文献+

简单凹形区域间空间关系的一种表示及推理模型 被引量:2

A Model for Representing and Reasoning of Spatial Relations between Simple Concave Regions
下载PDF
导出
摘要 空间拓扑关系的代表模型有区域连接演算RCC和9-交集模型.针对凹形区域间空间关系的研究工作主要有Cohn提出的RCC23.RCC23的表达力相对有限,在实际应用中具有一定的局限性.本文针对简单凹形区域空间关系的表示及推理,基于Egenhofer和El-Geresy的空间推理方法,完成了如下工作:扩展9-交集矩阵得到16-交集矩阵;基于16-交集矩阵扩展RCC23提出了RCC62;给出了RCC62的概念邻域图和最近拓扑关系图;提出了RCC62关系复合的推理规则.RCC62比RCC23新增了39种基本关系,表达力更强;RCC62的推理规则可以推导出RCC62的复合表. The most typical models of spatial topological relations are Region Connection Calculus(RCC)and 9-intersection model. However, there are few contributions on topological relations of concave regions in which the representative model is Cohn' s RCC23. There are some limitations of RCC23 especially in practical applications due to its less expressiveness. On the basis of Egenhofer' s and El-Geresy' s general methods for spatial reasoning, this paper completed the following work: 9-intersection matrix is extended to 16-intersection matrix; RCL-23 is refined to RCC62 based on 16-intersection matrix;the Conceptual Neighborhood Graph (CNG)and the Closest Topological Relation Graph( CIRG) of RCC62 are given; reasoning rules for RCC62 composed relations are presented. There are 39 new relations in RCC62, which is more expressive than RCC23 ;Base on the reasoning rules of RCC62,the composition table of RCC62 can be derived.
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第8期1830-1836,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.60573073 No.60773099 No.60503016 No.60603030 No.60703022) 国家863高技术研究发展计划(No.2006AA10Z245 No.2006AA10A309) 吉林省科技发展计划重点项目(No.20060213)
关键词 拓扑关系 简单凹形区域 凸壳 RCC23 9-交集 topological relation simple concave region convex hull RCC23 9-intersection
  • 相关文献

参考文献11

  • 1虞强源,刘大有,欧阳继红.基于区间值模糊集的模糊区域拓扑关系模型[J].电子学报,2005,33(1):186-189. 被引量:13
  • 2Randell DA, Ctti Z, Cohn AG. A spatial logic based on regions and connection[A]. Nebel B. Proc of the 3rd Int Conf on Principles of Knowledge Representation and Reasoning[C ]. San Mateo:Morgan Kaufmann, 1992. 165 - 176.
  • 3Egenhofer MJ, Franzosa RD. Point-set topological spatial relations[ J]. International Journal of Geographical Information Systems, 1991,5(2) : 161 - 174.
  • 4Egenhofer MJ, Herring JR. Categorizing binary topological relationships between regions, lines and points in geographic database[R]. Orono: University of Maine, 1991.
  • 5Cohn AG. A hierarchical representation of qualitative shape based on connection and convexity [ A ]. Frank A. Proc of the Int Cord on Spatial Information Theory: A Theoretical Basis for GIS E C 3. Berlin/Heidelberg: Springer, 1995.311 - 326.
  • 6El-Geresy BA, Abdelmoty AI. Order in space: a general formalism for spatial reasoning[J] .International Journal on Artificial Intelligence Tools, 1997,6(4) : 423 - 450.
  • 7Freksa C. Temporal reasoning based on semi-intervals[ J] .Artificial Intelligence, 1992,54: 199- 227.
  • 8Egenhofer MJ,Al-Taha K. Reasoning about gradual changes of topological relationships[ A]. Frank A. Theories and models of spatio-temporal reasoning in geographic space[ C]. Berlin/Heidelberg: Springer, 1992.196 - 219.
  • 9Cui Z, Cohn AG,Randell DA. Qualitative and topological relationships in spatial databases[ A]. Abel D. Advances in Spatial Databases[C]. Berlin: Springer, 1993. 293 - 315.
  • 10Duntsch I,Wang H,McCloskey S.Relation algebras in spatial reasoning [ A ]. Orlowska E. Extended Abstracts of the 4th Seminar on Relational Methods in Algebra, Logic, and Computer Science[ C]. Heidelberg: Physica-Verlag, 1998.63 - 68.

二级参考文献6

  • 1Zhan F B. Approximate analysis of binary topological relations between geographic regions with indeterminate boundaries[J]. Soft Computing,1998,2(2):28 - 34.
  • 2Schneider M. Finite Resolution Crisp and Fuzzy Spatial Objects. In:Forer P ,Yeh A G O ,He J (eds). Proceedings of 9th International Symposium on Spatial Data Handling. Beijing: International Geographical Union,5a,2000.3 - 17.
  • 3Altmann D Fuzzy set theoretic approaches for handling imprecision in spatial analysis [J]. International Journal of Geographical Information Systems, 1994,8(3) :271 - 289.
  • 4Ai Tinghua. A topological relation description for spatial objects with uncertainty boundaries[A] .In: Li Deren, Gong Jianya, Chen Xiaoling (eds). Spatial Information Science, Technology and its Application[ C ]. Wuhan, China: Wuhan Technical University of Stirveying and Mapping Press, 1998. 394 - 398.
  • 5Molenaar M, Cheng T. Fuzzy spatial objects and their dynamics. ISPRS Journal of photogrammetry & Remote sensing,2000,55(3):164 - 175.
  • 6刘文宝,邓敏.GIS图上地理区域空间不确定性的分析[J].遥感学报,2002,6(1):45-49. 被引量:24

共引文献12

同被引文献33

  • 1Egenhofer M, Franzosa R. Point-set topological spatial relations [J]. International Journal of Geo- graphical Information Systems, 1991,5 (2): 161- 174.
  • 2Egenhofer M J, Herring J. Categorizing binary to- pological relationships between regions, lines and points in geographical database[R]~. Department of Surveying Engeering, University of Maine, 1991.
  • 3Randell D A, Cui Z, Cohn A G. A spatial logic based on regions and connection[C]//Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning. San Francisco: Morgan Kaufmann Publishers, 1992.
  • 4Clarke B L. A calculus of individuals based on con- nection[J]. Notre Dame Journal of Formal Logic, 1981,23(3) :204-218.
  • 5Freksa C. Temporal reasoning based on semi-inter- vals[J]. Artificial Intelligence, 1992, 54: 199-227.
  • 6Randell D A,Cui Zhan,Cohn A G.A spatial logic based on regions and connection[C]//Proceedings of the 3rd International Conference on Knowledge Representation and Reasoning.San Mateo,USA:Morgan Kaufmann,1992:165-176.
  • 7Clarke B L.A calculus of individuals based on connection[J].Notre Dame Journal of Formal Logic,1981,22(3):204-218.
  • 8Clarke B L.Individuals and points[J].Notre Dame Journal of Formal Logic,1985,26(1):61-75.
  • 9Dornheim C.Undecidability of plane polygonal mereotopology[C]//Proceedings of the 6th International Conference on Principles of Knowledge Representation and Reasoning.[S.l.]:Morgan Kaufman,1998:342-353.
  • 10Gotts N M.Using the RCC formalism to describe the topology of spherical regions,Technical Report 96.24[R].School of Computer Studies,University of Leeds,1996.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部