期刊文献+

面向室外视频监控的背景重构算法 被引量:5

A Background Reconstruction Algorithm for Outdoor Video Surveillance
下载PDF
导出
摘要 针对室外视频监控环境复杂,运动对象检测准确性较低,提出一种用于背景减运动对象检测的背景重构算法.综合考虑像素点亮度的稳定状态持续时间和出现频率,定义加权亮度直方图确定量化区间的背景概率,根据背景概率大小和分布,结合基于亮度空间相关性的修正实现背景重构.实验结果表明,重构的背景有效地克服了训练阶段运动对象的干扰,用于运动对象检测能够适应背景扰动、摄像机轻微晃动等复杂情况,提高检测的准确性. The accuracy of motion objects detection is low for outdoor complicated visual surveillance,so a background re- construction algorithm used in background subtraction motion objects detection is proposed. The algorithm integrates the stab'tlization duration with appearance frequency, and uses weighted intensity histogram to confirm the background probability of quantity interval. Based on the probability values and distributing, it uses the intensity space correlation to amend the background, and realizes the background reconstruction. The experimental results show that the reconstructed background conquers the influence of motion objects in waining phase, and in motion objects detection application, it is applicable in the situation existing background fluctuation and small camera displacements etc, and it improves the accuracy of detection.
作者 郑锦 李波
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第8期1854-1859,共6页 Acta Electronica Sinica
基金 国家863高技术研究发展计划(No.2009AA01Z316) 国家自然科学基金(No.60505007)
关键词 运动对象检测 背景重构 加权亮度直方图 背景概率 空间相关性 motion objects detection background reconstruction weighted intensity histogram background probability space correlation
  • 相关文献

参考文献10

  • 1Mahadevan. V, Vasconcelos. N. Background subtraction in highly dynamic scenesE A ]. In Proceedings IEEE Conference on Computer Vision and Pattern Recognition[ C ]. Anchorage, 2008.1 - 6.
  • 2YunChu Zhang, Zize Liang, etc. An adaptive mixture Gaussian background model with online background reconstruction and adjustable foreground mergence time for motion segmentation [A]. In Proceedings IEEE Conference on Industrial Technology[ C]. Beijing. 2005.23 - 27.
  • 3Kentaro Toyama etc. Wallflower: Principles and practice of background maintenance[ A]. The Proceedings of the Seventh IEEE International Conference on Computer Vision [ C ]. Kerkyra, 1999. 255 - 261.
  • 4N M Oliver, B Rosario, A P Pentland. A Bayesian computer vision system for modeling human interactions[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (8) :831 - 843.
  • 5C Stauffer W E. L Grimson. Adaptive background mixture models for real-time tracking[ A ]. Proc In Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition[ C]. Fort Collins, 1999,2: 246 - 252.
  • 6Elgammal A, Duraiswami R, Davis. Efficient non-parametric adaptive color modeling using fast gauss transform [ A ]. Pro ceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition[ C1. Kauai, Hawaii, 2001,2:563 - 570.
  • 7Gloyer B, Aghajan HK, Siu KY, Kailath T. Video-based free- way monitoring system using recursive vehicle tracking [ A ]. IS&T-SPIE Symposium on Electronic Imaging: Image and Video Proceedings[C]. San Jose, CA, USA, 1995. 2421 : 173 - 180.
  • 8Long W, Yang Y. Stationary background generation: an altemative to the difference of two images [ J ]. Pattem Recognition. 1990,23(12) : 1351 - 1359.
  • 9D. Gutchess, M Trajkovic, E. Cohen-Solal, D. Lyons, A. K. Jain. A background model initialization algorithm for video surveillance[ A]. The Proceedings of the Eighth IEEE International Conference on Computer Vision[ C ]. Vancouver, 2001. 1:733 - 740.
  • 10侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97

二级参考文献25

  • 1Horn BK, Schunk BG. Determining optical flow. Artificial Intelligence, 1981,17(1-3): 185-203.
  • 2Smith SM, Brady JM. ASSET-2: Real-Time motion segmentation and shape tracking. IEEE Trans. on PAMI, 1995,17(8):814-820.
  • 3Neff A, Colonnese S, Russo G, Talone P. Automatic moving object and background separation. Signal Processing, 1998,66(2):219-232.
  • 4Meier T, Ngan KN. Automatic segmentation of moving objects for video object plane generation. IEEE Trans. on Circuits and Systems for Video Technology, 1998,8(5):525-538.
  • 5Jolly MPD, Lakshmanan S, Jain AK. Vehicle segmentation and classification using deformable templates. IEEE Trans. on PAMI,1996,18(3):293-308.
  • 6Ridder C, Munkelt O, Kirchner H. Adaptive background estimation and foreground detection using Kalman-filter. In: Proc. of the Int'l Conf. on Recent Advances in Mechatronics, ICRAM'95. UNESCO Chair on Mechatronics, 1995. 193-199.
  • 7Friedman N, Russell S. Image segmentation in video sequences: A probabilistic approach. In: Proc. of the 13th Conf. on Uncertainty in Artificial Intelligence (UAI). San Francisco, 1997.
  • 8Stauffer C, Grimson WEL. Adaptive background mixture models for real-time tracking. In: Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Vol 2. 1999. 246-252.
  • 9KaewTraKulPong P, Bowden R. An improved adaptive background mixture model for real-time tracking with shadow detection. In:The 2rid European Workshop on Advanced Video-based Surveillance Systems. Kingston upon Thames, 2001.
  • 10Elgammal A, Harwood D, Davis L. Non-Parametric model for background subtraction. In: Proc. of the 6th European Conf. on Computer Vision. Dublin Ireland, 2000.

共引文献96

同被引文献51

  • 1包红强,张兆扬.一种基于区域Gibbs势能函数的视频运动对象分割算法[J].通信学报,2005,26(6):57-61. 被引量:8
  • 2侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 3耿玉亮,须德.一种鲁棒的摄像机运动分类算法[J].电子学报,2006,34(7):1342-1346. 被引量:3
  • 4肖梅,韩崇昭.基于在线聚类的背景减法[J].模式识别与人工智能,2007,20(1):35-41. 被引量:9
  • 5GUTCHESS D, TRAJKONIC M, COHEN-SOLAL E, et al. A back-ground model initialization algorithm for video surveillance [ C]// Proceedings of the 8th IEEE International Conference on Computer Vision. New York: IEEE, 2001:733 -740.
  • 6MAGEE D. Tracking multiple vehicle using foreground, back-ground and motion models[ J]. Image and Vision Computing, 2004, 22(2) : 143 - 155.
  • 7YILMAZ A, LI X, SHAH M. Contour-based object tracking with occlusion handling in video acquired using mobile cameras[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(11) : 1531 - 1536.
  • 8HORN B K, SCHUN B G. Determining optical flow [ J]. Artificial Intelligence, 1981,17(1/3) : 185 -203.
  • 9SMITH S M, BRADY J M. ASSET-2: Real-time motion segmentation and shape tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8) : 814 - 820.
  • 10NERI A, COLONNESE S, RUSSO G, et al. Automatic moving object and background separation [J]. IEEE Transactions on Signal Processing, 1998, 66(2) : 219 -232.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部