期刊文献+

准Hilbert C~*-模上的范数等式(英文)

Norm equalities in pre-Hilbert C~*-modules
下载PDF
导出
摘要 目的为了研究‖x+y‖=‖x‖+‖y‖和毕达哥拉斯等式在准HilbertC*-模中成立的充要条件。方法采用了算子论方法进行研究。结果证明了‖x+y‖=‖x‖+‖y‖成立当且仅当存在A上的态使得(〈‖y‖x-‖x‖y,‖y‖x-‖x‖y〉)=0且(〈x,x〉)=‖x‖2或(〈y,y〉)=‖y‖2成立。也给出了准HilbertC*-模中毕达哥拉斯等式成立的充要条件。结论本文的结果对研究准HilbertC*-模中的范数等式非常有用。 Aim To research the necessary and sufficient conditions for ||x+y||=||x||+||y||andPythagoras equality in a pre-Hilbert C^* -module. Methods Operator theoretic method is used. Results. || x+y||=||x||+||y||proves tenable if and only if there exists a state φ of the C* -algebra A such that φ(〈||y||x-||x||y,||y||x-||x||y〉)=0and either φ((x,x))=||x||2 or φ(〈y,y〉)=||y||2 The necessary and sufficient conditions for Pythagoras equality in a pre-Hilbert C^*-module. Conclusion The result is very useful for researching norm equalities in pre-Hilbert C* -modules.
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2009年第2期3-7,共5页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 Supported by the National Natural Science Foundation Grants of China(No.10571113)
关键词 C*-代数 准HilbertC*-模 数值域 三角不等式 CAUCHY-SCHWARTZ不等式 毕达哥拉斯等式 C*-algebra pre-Hilbert C* -module numerical range triangle inequality Cauchy-Schwartz inequality Pythagoras equality
  • 相关文献

参考文献7

  • 1LANCE C. Hilbert C^*-Modules[M]. Cambridge: Cambridge University Press, 1995.
  • 2Ljiljana Arambasie, Rajna Rajic. On some norm equalities in pre-Hilbert C^* -modules[J]. Linear Algebra Appl, 2006, 414(1) : 19-28.
  • 3JOSIP PECARIC, RAJNA RAJIC. The Dunkl-Williams equality in pre-Hilbert C^* -modules[J]. Linear Algebra and Its Applications, 2007, 425:16-25.
  • 4LIN C S. The unilateral shift and a norm equality for bounded linear operators[J]. Proc Amer Math Soc, 1999, 127(6): 1693-1696.
  • 5NAKAMOTO R, TAKAHASI S. Norm equality condition in triangular inequality [J].Scientiae Mathematicae Japonicae, 2002, 55(3): 463-466.
  • 6BARRAA M. ,BOUMAZGOUR M. Inner derivations and norm equality[J]. Proc Amer Math Soc, 2002,130(2) :471-476.
  • 7MURPHY G J. C^* -Algebras and Operator Theory[M]. New York: Academic Press, 1990.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部