期刊文献+

4个不同素因子时的Nicol问题 被引量:1

The Nicol question with four different prime divisors
下载PDF
导出
摘要 主要讨论了4个不同素因子的Nicol数,得到了如下结果:(1)4个不同素因子的Nicol数只可能是3-Nicol数或4-Nicol数,同时也证明了Nicol猜想在4个不同素因子情况下是正确的;(2)4个不同素因子的4-Nicol数只能是2α1.3α2.5α3.pα4,p≥7为素数;(3)4个不同素因子的3-Nicol数只能是下列形式之一:n=2α1.7α2.11α3.pα4或n=2α1.7α2.13α3.pα4或n=2α1.5α2.pα3.qα4,p≤41,p<q或n=2α1.3α2.pα3.qα4,p,q为素数且5≤p<q。 In this disertation,we investigate the Nicol numbers with four different prime divisors. The main results are as follows: (1)The Nieol numbers with four different prime divisors must be 3-Nicol numbers or 4- Nicol numbers. At the same time, we prove the Nicol's conjecture with four different prime divisors. (2)The 4- Nicol numbers with four different prime divisors must be of the form andis a prime. (3)The 3-Nicol numbers with four different prime divisors must be of the form: n=2^α1·7^α2·11^α3·P^α4orn=2^α1·7^α2·13^α3·P^α4orn=2^α1·5^α2·P^α3·q^α4,P≤41.P〈qorn=2^α1·3^α2·P^α3·q^α4,P.qand q are primes and 5 ≤ p 〈 q.
出处 《宿州学院学报》 2009年第4期85-87,共3页 Journal of Suzhou University
关键词 欧拉函数 整除 Nicol数 t-Nicol数 Euler's totient function Divisbility Nicol number t-Nicol number
  • 相关文献

参考文献3

  • 1C.A.Nicol.some Diophantine equations involvingarithmetic functions[].Journal of Mathematical Analysis and Applications.1966
  • 2M.Zhang.On a divisibility problem[].JSichuanNormal UnivNatSciEd.1995
  • 3F.Luca,J.Sandor.On a problem of Nicol and Zhang[].Journal of Number Theory.2008

同被引文献3

  • 1C. A. Nicol, some diophant in equations involving arithmetic functions[J]. J.Math.Anal.Appl, 1966, (15): 154-161.
  • 2M. Zhang, On a divisibility problem, J. Sichuan Normal Univ. Nat. Sci. Ed. 1995, (32): 240-242.
  • 3F. Luca, J. Sandor, Onaproblem ofNicoland Zhang, J. Number Theory, 2008, 128: 1044-1059.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部