期刊文献+

基于次梯度投影的数字助听器自适应声源定位方法 被引量:2

Acoustic source localization based on adaptive subgradient projection in digital hearing aids
下载PDF
导出
摘要 该方法在特征值分解算法的基础之上,利用次梯度投影方法自适应估计声源到麦克风的脉冲响应系数,进而估计出各麦克风之间时延,并利用几何方法定位声源在3D空间的位置.与传统的基于广义互相关的时延估计算法相比,提出的算法在房间反射与共振的情况下定位精度更高;与基于NLMS算法的自适应特征值分解时延估计算法相比,提出的算法收敛速度更快,并且在强噪声的情况下鲁棒性更强.基于眼镜数字助听器声源定位系统的实验与仿真研究了麦克风阵不同的几何尺寸对算法性能和定位精度的影响,证明了在不同信噪比情况下该算法都能有效定位声源的3D空间位置. Based on the eigenvalue decomposition (EVD) algorithm, the proposed method estimates the impulse response coefficients between speech source and microphones by means of adaptive subgradient projection algorithm, then acquires the time delays of microphone pairs, and calculates the source position in 3D space by geometric method subsequently. Compared with the traditional time-delay estimation algorithms based on generalized cross-correlation (GCC), the proposed method achieves more accurate results when reverberation exists. Compared with the adaptive normalized least mean squares-EVD algorithm, the proposed method converges faster and is more robust under strong noises. Experiments and simulations based on glasses hearing aid show the influences on the localization performance for different microphone array sizes, and demonstrate the validity of the proposed method using signals with different signal-to-noise ratios (SNRs).
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第4期667-672,共6页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60872073) 江苏省自然科学基金资助项目(BK2008291) 国家教育部博士点基金资助项目(20050286001)
关键词 声源定位 自适应次梯度投影算法 数字助听器 speech source localization adaptive subgradient projection algorithm digital hearing aids
  • 相关文献

参考文献10

  • 1Martin Keith D. Estimating azimuth and elevation from interaural differences [ C ]//IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics. New York, 1995:96-99.
  • 2Liu Chen, Wheeler Bruce C, O'Brien William D, et al. Localization of multiple sound sources with two microphones[ J ]. Journal of Acoustical Society of America, 2000,108(4) : 1888 - 1904.
  • 3Widrow Bernard. A microphone array for hearing aids [J].IEEE Circuits and Systems Magazine, 2000, 1 (2) : 26 -32.
  • 4Wu Wen-Chih, Hsieh Cheng-Hsun, Huang Hsin-Chieh,et al. Hearing aid system with 3D sound localization[C]//Proceedings of IEEE Region 10 Conference on TENCON. Taipei, China, 2007:1-4.
  • 5Benesty Jacob, Chen Jingdong, Huang Yiteng. Microphone array signal processing[M]. Berlin, Germany: Springer, 2008 : 182 -215.
  • 6Doclo Simon, Moonen Marc. Robust adaptive time delay estimation for speaker localization in noisy and reverberant acoustic environments[J].EURASIP Journal on Applied Signal Processing, 2003( 11 ) : 1110 - 1124.
  • 7Benesty Jacob. Adaptive eigenvalue decomposition algorithm for passive acoustic source localization [ J ]. Journal of Acoustical Society of America, 2000, 117 (1) : 384 -391.
  • 8Combettes Patrick L. Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections [J]. IEEE Transactions on Image Processing, 1997,6(4) :493 -506.
  • 9Yamada Isao, Slavakis Konstantinos, Yamada Kenyu. An efficient robust adaptive filtering algorithm based on parallel subgradient projection techniques [ J ]. IEEE Transactions on Signal Processing, 2002,50 ( 5 ) : 1091 - 1101.
  • 10Guillaume Lathoud. Spatio-temporal analysis of spontaneous speech with microphone arrays[D]. Martigny, Switzerland: IDIAP Research Institute, 2006.

同被引文献37

  • 1Candes E J, Tao T. Near optimal signal recovery from random projections : universal encoding strategies [ J ]. IEEE Transactions on Information Theory, 2006, 52 ( 12 ) :5406 - 5425.
  • 2Plumbley M, Abdallah S, Blumensath T, et al. Sparse representations of polyphonic music [ J ]. Signal Process- ing, 2006,86(3): 417-431.
  • 3Plumbley M, Abdallah S, Blumensath T, et al. Musical audio analysis using sparse representations [ C ]// COMPSTAT 2006 Proceedings in Computational Statis- tics. Heidelberg, Germany, 2006 : 104 - 117.
  • 4Davies M, Daudet L. Sparse audio representations using the MCLT [ J ]. Signal Processing, 2006, 86 ( 3 ) : 457 - 470.
  • 5Peyre G. Best basis compressed sensing [ J ]. IEEE Transactions on Signal Processing, 2010,58 ( 5 ) : 2613 - 2622.
  • 6Baraniuk R G. Compressive sensing [ J ]. IEEE Signal Processing Magazine, 2007, 24(4) : 118 -121.
  • 7Figueiredo M A T, Nowak R D, Wright S J, et al. Gradient projection for sparse reconstruction: applica- tion to compressed sensing and other inverse problems [J ]. Selected Topics in Signal Processing, 2007,1 (4) :586 - 597.
  • 8Chong K S,Gwee B H,Chang J S.A 16-Channel Low-Power Nonuniform Spaced Filter Bank Core for Digital Hearing Aids[J].Circuits&Systems II Express Briefs IEEE Transactions on,2006,53(9):853-857.
  • 9Schasse A,Martin R,Soergel W,et al.Efficient Implementation of Single-Channel Noise Reduction for Hearing Aids Using a Cascaded Filter-Bank[C]//Speech Communication;10.ITG Symposium;Proceedings of.2012:1-4.
  • 10Schasse A,Gerkmann T,Martin R,et al.Two-Stage Filter-Bank System for Improved Single-Channel Noise Reduction in Hearing Aids[J].IEEE/ACM Transactions on Audio Speech&Language Processing,2015,23(2):383-393.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部