摘要
令G=(V,E)是一个图,点集S■V,如果满足N[S]=V(G)(或N(S)=V(G)),则称点集S是一个控制集(或全控制集).一个连通图G如果满足:对任何不相邻于一次点的点v,G-v的全控制数小于G的全控制数,则称图G是一个γ_t-临界图.给出了连通无爪3-正则图G的控制数满足γ(G)≤n/3.同时找到一个直径是2的4-γ_t-临界图.
Let G= (V, E) be a graph, the subset S of V is called a dominating set (or total dominating set) if N[S]=V(G) (or N(S)=V(G) ). A graph G with no isolated vertex is total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, the total domination number of G-v is less than the total domination number of G. We call these graphs γt-critical. This paper, shows that the claw-free cubic graph G satisfying γ(G) ≤ n/3 and gives a 4-γt- critical graph G with diam(G)=4.
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第1期4-6,30,共4页
Journal of Central China Normal University:Natural Sciences
基金
国家自然科学基金项目(10571071
10671081)
关键词
控制集合
全控制集合
控制数
全控制数
dominating set
total dominating set
domination number
total domination number