期刊文献+

复空间形式中具有共形MASLOV形式的拉格朗日子流形的一些例子

Some Explicit Examples of Lagrangian Submanifolds with Conformal Maslov Form in Complex Space Forms
下载PDF
导出
摘要 该文从实空间形式到复空间形式拉格朗日等距浸入中找到了一些非平凡的具有共形Maslov形式的拉格朗日子流形. In this paper, the author finds some new explicit examples of Lagrangian submanifolds with conformal Maslov form among the Lagrangian isometric immersions of a real space form into a complex space form.
作者 韩英波
机构地区 东南大学数学系
出处 《数学物理学报(A辑)》 CSCD 北大核心 2009年第4期912-917,共6页 Acta Mathematica Scientia
关键词 实空间形式 复空间形式 具有共形Maslov形式的拉格朗日子流形 Real-space-form Complex-space-from A Lagrangian submanifolds with conformal Maslov form.
  • 相关文献

参考文献11

  • 1Weinstein A. Lectures on symplectic manifolds. Conference board of the Mathematical Scientific, 1977, 29.
  • 2Chen B Y. Ja~obi's elliptic functions and Lagrangian immersions. Proc Royal Soc Edin, 1996, 126: 678-704.
  • 3Borrelli V, Chen B Y, Morvan J M. Une caracterisation geome trique de la sphere de Whitney. C R Acad Sci Paris Ser I Math, 1995, 321:1485-1490.
  • 4Ros A, Urbano F. Lagragian submanifolds of C^n with conformal Maslov form and the Whitney sphere. J Math Soc Japan, 1998, 50(1): 203-226.
  • 5Castro I, Montealegre C R, Urbano F. Closed conformal vector fields and Lagrangian submanifolds in complex space forms. Pacific J Math, 2001, 199:269-301.
  • 6Castro I, Urbano F. Lagrangian surfaces in the complex Euclidean plane with conformal Maslov form. Tohoku Math J, 1993, 45:565-582.
  • 7Chao X L, Dong Y X. A rigidity theorem of Lagrangian submanifolds with conformal Maslov form in complex forms. Preprint.
  • 8Oh Y G. Second variation and stabilities of minimal Lagrangian submanifolds Kaehler manifolds. Invent Math, 1990, 101:501-519.
  • 9Chen B Y, Oguie K. On totally real submanifolds. Trans Amer Math Soc, 1974, 193:257-266.
  • 10Ejiri N. Totally real minimal immersions of n-dimensional real space forms into n-dimensional complex space forms. Proc Amer Math Soc, 1982, 84:243-246.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部