复空间形式中具有共形MASLOV形式的拉格朗日子流形的一些例子
Some Explicit Examples of Lagrangian Submanifolds with Conformal Maslov Form in Complex Space Forms
摘要
该文从实空间形式到复空间形式拉格朗日等距浸入中找到了一些非平凡的具有共形Maslov形式的拉格朗日子流形.
In this paper, the author finds some new explicit examples of Lagrangian submanifolds with conformal Maslov form among the Lagrangian isometric immersions of a real space form into a complex space form.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2009年第4期912-917,共6页
Acta Mathematica Scientia
参考文献11
-
1Weinstein A. Lectures on symplectic manifolds. Conference board of the Mathematical Scientific, 1977, 29.
-
2Chen B Y. Ja~obi's elliptic functions and Lagrangian immersions. Proc Royal Soc Edin, 1996, 126: 678-704.
-
3Borrelli V, Chen B Y, Morvan J M. Une caracterisation geome trique de la sphere de Whitney. C R Acad Sci Paris Ser I Math, 1995, 321:1485-1490.
-
4Ros A, Urbano F. Lagragian submanifolds of C^n with conformal Maslov form and the Whitney sphere. J Math Soc Japan, 1998, 50(1): 203-226.
-
5Castro I, Montealegre C R, Urbano F. Closed conformal vector fields and Lagrangian submanifolds in complex space forms. Pacific J Math, 2001, 199:269-301.
-
6Castro I, Urbano F. Lagrangian surfaces in the complex Euclidean plane with conformal Maslov form. Tohoku Math J, 1993, 45:565-582.
-
7Chao X L, Dong Y X. A rigidity theorem of Lagrangian submanifolds with conformal Maslov form in complex forms. Preprint.
-
8Oh Y G. Second variation and stabilities of minimal Lagrangian submanifolds Kaehler manifolds. Invent Math, 1990, 101:501-519.
-
9Chen B Y, Oguie K. On totally real submanifolds. Trans Amer Math Soc, 1974, 193:257-266.
-
10Ejiri N. Totally real minimal immersions of n-dimensional real space forms into n-dimensional complex space forms. Proc Amer Math Soc, 1982, 84:243-246.
-
1宋卫东,邵维新.复空间形式中具有常数量曲率的全实子流形(英文)[J].数学杂志,2013,33(1):20-26. 被引量:1
-
2潮小李.Rigidity Theorems for Hypersurfaces in Real Space Form[J].Journal of Mathematical Research and Exposition,2001,21(3):367-370.
-
3孙宝磊,何俊秀,姚纯青.复空间形式中具有平行平均曲率向量的全实伪脐子流形[J].西南大学学报(自然科学版),2016,38(2):72-77.
-
4徐翔.实空间形式到四元欧氏空间的Lagrangian等距浸入(英文)[J].复旦学报(自然科学版),2007,46(2):175-183.
-
5李义仁,欧阳崇珍,王仲才.复空间形式中曲率齐性超曲面[J].江西大学学报(自然科学版),1992,16(2):122-126.
-
6王霞,文斌.复空间形式的紧致全实伪脐子流形[J].华南农业大学学报,2008,29(2):122-124.
-
7王霞.复空间形式的紧致全实伪脐子流形[J].华南师范大学学报(自然科学版),2007,39(4):6-10. 被引量:1
-
8张量,潘旭林,张攀.复空间形式中Lagrange子流形的Casorati曲率不等式(英文)[J].数学进展,2016,45(5):767-777. 被引量:3
-
9张勤.具有余维二的极小Einstein子流形[J].四川师范大学学报(自然科学版),2003,26(4):342-344. 被引量:1
-
10胡泽军.空间形式中子流形的数量曲率与截面曲率[J].郑州大学学报(自然科学版),1992,24(4):26-29.