期刊文献+

组合的分组测试算法的近似控制标准

On the Approximate Control Criteria for Combinatorial Group Testing Procedure
下载PDF
导出
摘要 对于给定的一个集合,分组测试问题是通过一系列的测试去确定这个集合的一个子集.在文中,作者首先运用动态规划的理论与方法,建立了一个近似控制标准,目的是对分组测试算法的构建过程进行有效控制,使所构建的算法达到最优.其次,应用该近似控制标准研究了在n个硬币集合中确定一个伪硬币的最小平均测试数的问题.文中所涉及的近似控制问题,给出了在一个给定集合中去确定这个集合的一个子集的最优分组测试算法,该最优分组测试算法是在平均测试步骤最少意义下的最优分组测试算法. The group testing problem for a given set is to determine a subset of the set by a series of tests. In this paper, firstly, the authors use the theory and method of dynamic programming to establish a proximate dominating criterion for controlling group testing procedures. Establishing the group testing procedure is optimal through the control. Secondly, the authors consider the problem of ascertaining the minimum average number of tests which suffice to determine one defective coin in a set of n coins by applying the proximate control criterion. In particular, this paper is concerned with proximate control problem on a group testing procedure, in which an optimal procedure for culling out the one subset of a given set is obtained. The desired procedure is optimal in the sense of minimizing the average number of steps.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2009年第4期974-984,共11页 Acta Mathematica Scientia
基金 国家自然科学基金(60574075)资助
关键词 伪硬币 标准硬币 分组测试 天平 近似控制标准. Defective coins Standard coins Group testing Balances Proximate control criteria.
  • 相关文献

参考文献15

  • 1Richard Bellman. Dynamic Programming. Princeton: Princeton University Press, 1957.
  • 2Berlekamp E R. Cooperative bridge bidding. IEEE Transactions On Information Theory, 1976, 22: 753- 755.
  • 3Du D, Hwang F. Minimizing a combinatorial function. SIAM J Algebraic Discrete Methods, 1982, 3: 523-528.
  • 4Hu M, Hwang F, Wang J. A boundary problem for group testing. SIAM J Algebraic Discrete Methods, 1982, 2:81-87.
  • 5Mead D G. The average number of weighings to locate a counterfeit coin. IEEE Transactions On Infor- mation Theory, 1979, 25:616-617.
  • 6Fano R M. Transmission of Information. New York: Wiley, 1961.
  • 7Wang Q Y, Lin Y X, Gulati C M. The invariance principle for linear processes with applications. Econometric Theory, 2002, 18:119-139.
  • 8Bellman R, Glass B. On varsions of the defective coin problem. Information and Control, 1961, 4:118-151.
  • 9Ratko Tosic. Two counterfeit coins. Discrete Mathematics, 1983, 45:295-298.
  • 10Hwang F. A tale of two coins. American Mathematical Monthly, 1987, 94:121-129.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部