期刊文献+

半鞅非Lipschitz系数随机微分方程解的大偏差 被引量:1

Large Deviations for Solutions to Stochastic Differential Equations Driven by Semimartingale with Non-Lipschitz Coefficients
下载PDF
导出
摘要 建立了半鞅非Lipschitz系数随机微分方程,研究了Freidlin-Wentzell型大偏差原理. In this paper, a class of stochastic differential equations (SDEs) driven by semimartingale with non-Lipschitz coefficients is established. A large deviation principle of FreidlinWentzell type is investigated.
作者 费为银
出处 《数学物理学报(A辑)》 CSCD 北大核心 2009年第4期1074-1083,共10页 Acta Mathematica Scientia
基金 国家973项目(2007CB814901) 国家自然科学基金(10826098) 安徽省自然科学基金资助
关键词 随机微分方程 半鞅 GRONWALL引理 非LIPSCHITZ条件 大偏差. Stochastic differential equations Semimartingale Gronwall lemma Non-Lipschitz conditions Large deviation.
  • 相关文献

参考文献9

  • 1Fang S, Zhang T S. A study of a class of stochastic differential equations with non-Lipschitzian coefficients. Probab Theory Relat Fields, 2005, 132:356-390.
  • 2Mao X R. Exponential Stability of Stochastic Differential Equation. New York: Marcel Dekker, 1994.
  • 3Freidlin M I, Wentzell A D. Random Perturbations of Dynamical System. New York, Berlin, Heidelberg, Tokyo: Springer-Verlag, 1984.
  • 4Dembo A, Zeitouni A. Large Deviations Techniques and Applications. Berlin Heidelberg: Springer-Verlag, 1998.
  • 5Deuschel J D, Stroock D W. Large Deviations. Boston, San Diego, New York: Academic Press, 1989.
  • 6Stroock D W. An Introduction to the Theory of Large Deviations. Berlin: Springer-Verlag, 1984.
  • 7Protter P. Stochastic Integration and Differential Equations. Berlin, Heidelberg, New York: Springer- Verlag, 1990.
  • 8Fang S, Zhang T S. Large deviations for the Brownian motion on loop groups. Journal of Theoretical Probability, 2001, 14:463-483.
  • 9Strook D W, Varadhan S R S. Multidimensional Diffusion Processes. New York: Springer-Verlag, 1979.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部