期刊文献+

交换群上Hopf路余代数的结构分类 被引量:1

Structure Classification of Hopf Path Coalgebras over Abelian Groups
下载PDF
导出
摘要 设G是群,kG是域k上的群代数.对任意Hopf箭向Q=(G,r),利用右kZ_(u(C))-模的直积范畴(?)M_(kZu(C))与kG-Hopf双模范畴之间的同构,可由^(u(C))(kQ_1)~1上的右kZ_(u(C))-模结构导出在箭向余模kQ_1上的kG-Hopf双模结构.该文讨论在群G分别是2阶循环群与克莱茵四元群时的Hopf路余代数kQ^c的同构分类及其子Hopf代数kG[kQ_1]结构. Let G be a group and kG be the that the kG-Hopf bimodule category KKGkM^KGKG group algebra of G over a field k. It is well known is equivalent to the direct category ПMkzu(c). For any Hopf quiver Q = (G, r), the kG-Hopf bimodule structures on the arrow comodule kQ1 can be derived from the right kZu(c)-module structures on u(C)(kQ1)^1. In this paper, the author discusses the isomorphic classification of Hopf path coalgebra kQc and the structures of Hopf subalgebra of kG[kQ1] of kQ^c in case G is a cyclic group and G is a Klein quaternion group, respectively.
作者 吴美云
机构地区 南通大学理学院
出处 《数学物理学报(A辑)》 CSCD 北大核心 2009年第4期1119-1131,共13页 Acta Mathematica Scientia
基金 国家自然科学基金(10771183)资助
关键词 HOPF代数 分歧. Hopf algebra Module Ramification.
  • 相关文献

参考文献10

  • 1Auslander M, Reiten I, SmalφS Φ. Representation Theory of Artin Algebras. Cambridge: Cambridge University Press, 1995.
  • 2Cibils C, Rosso M. Hopf quivers. J Algebra, 2002, 254:241-251.
  • 3Cibils C, Rosso M. Algebras des chemins quantiques. Adv Math, 1997, 125:171-199.
  • 4吴美云,唐秋林.二面体群上Hopf路余代数的结构分类[J].数学年刊(A辑),2007,28(5):709-718. 被引量:5
  • 5Zhang S, Zhang Y Z, Chen H X. Classification of PM Quivers Hopf Algebras. Singapore: World Scientific, 2008.
  • 6Montgomery S. Hopf Algebras and Their Actions on Rings. Providence RI: CBMS Reg Conf Series 82, 1993.
  • 7Sweedler M E. Hopf Algebras. New York: Benjamin, 1969.
  • 8Woronowicz S L. Differential calculus on compactmatrix pseudogroups (quantum groups). Commun Math Phys, 1989, 122:125-170.
  • 9Nichols W. Bialgebras of type one. Commun Alg, 1978,6:1521-1552.
  • 10Chin W, Montgomery S. Basic Coalgebras, Modular Interfaces. AProvidence RI: mer Math Soc, 1997.

二级参考文献11

  • 1Auslander M.,Reiten I.and Smal S.O.,Representation Theory of Artin Algebras[M],Cambridge:Cambridge University Press,1995.
  • 2Cibils C.and Rosso M.,Hopf quivers[J],J.Algebra,2002,254:241-251.
  • 3Cibils C.and Rosso M.,Algebras des chemins quantiques[J],Adv.Math.,1997,125:171-199.
  • 4Majid S.,Physics for algebraists:Non-commutative and non-cocommutative Hopf algebras by a bicross product construction[J],J.Algebra,1990,130:17-64.
  • 5Reshetikhin N.Yu.and Turaev V.G.,Ribbon graphs and their invariants derived from quantum groups[J],Commun.Math.Phys.,1990,127:1-26.
  • 6Zhu X.,Finite representations of a quiver arising from string theory[EB/OL].[2005-08-01].e-print http://arxiv.org/abs/math.AG/0507316.
  • 7Robles-Llana D.and Rocek M.,Quivers,quotients and duality[EB/OL].[2005-01-01].e-print http://arxiv.org/abs/help-th/0405230.
  • 8Zhang S.,Zhang Y.and Chen H.X.,Classification of PM quivers Hopf algebras[EB/OL],[2005-01-01].http://arxiv.org/abs/math.QA/0410150.
  • 9Montgomery S.,Hopf Algebras and Their Actions on Rings[M],CBMS Reg.Conf.Series 82,Providence,RI,1993.
  • 10Sweedler M.E.,Hopf Algebras[M],Benjamin:New York Press,1969.

共引文献4

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部