期刊文献+

压差方程的一维活塞问题 被引量:3

One-Dimensional Piston Problem of Pressure-Gradient Equations
下载PDF
导出
摘要 用改进的Glimm格式的方法,研究压差方程的一维活塞问题:当活塞的运动速度是一个常数的扰动时,含有激波的弱解的存在性.对波的相互作用以及扰动波在主激波和活塞上的反射给出了精确的估计,在对主激波的强度不加限制的情况下证明激波解的整体存在性. This paper uses the improved Glimm scheme to study a one-dimensional problem for the pressure gradient equations when the speed of piston is a constant disturbance. We show existence of the weak solution containing shock waves. Using the modified Glimm scheme, we give global existence of shock front solution to this problem in bounded varition (BV) space.
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期388-393,共6页 Journal of Shanghai University:Natural Science Edition
关键词 活塞问题 压差方程 激波 Glimm格式 piston problem pressure gradient equations shock wave solution Glimm scheme
  • 相关文献

参考文献8

  • 1COURANT R, FRIEDRICHS K O. Supersonic flow and shock waves [ M ]. New York: Interscience, 1948 : 121- 235.
  • 2LI J, YANG S, ZHANG T. The two-dimensional Riemann problem in gas dynamics [ M]. Boca Raton: CRC Press, 1998 : 157-179.
  • 3杨柳,盛万成.气体动力学压差方程一类波的相互作用[J].数学物理学报(A辑),2005,25(2):277-280. 被引量:3
  • 4王泽军.一维活塞问题激波解的整体存在性[J].数学年刊(A辑),2005,26(4):549-560. 被引量:4
  • 5LAX P D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves [ M ]. Philadelphia: SIAM, 1957:537-566.
  • 6SMOLLER J. Shock waves and reaction-diffusion equations [ M]. New York: Springer-Verlag, 1994:239-385.
  • 7周毓麟.一维定常流体力学[M].北京:科学出版社,1998:45-223.
  • 8GLIMM J. Solutions in the large for nonlinear hyperbolic systems of equations [ J]. Comm Pure Appl Math, 1965, 18:695-715.

二级参考文献9

  • 1ZeJunWANG.Local Existence of the Shock Front Solution to the Axi-symmetrical Piston Problem in Compressible Flow[J].Acta Mathematica Sinica,English Series,2004,20(4):589-604. 被引量:4
  • 2Sheng W C. Delta waves as distribution solutions of the 2-D transportation equations in gas dynamics. Applied Functional Analysis, 1997,3:161-168.
  • 3Sheng W C, Zhang T. The Riemann problem for the transportation equations in gas dynamics. Memoirs of AMS, 1999, 137(654).
  • 4Smoller J A. Shock Waves and Reaction-Diffusion Equations. New York: Springer-Verlag, 1982.
  • 5Zhang T, Zheng Y. Conjecture on structure of solution of Riemann problem for 2-D gas dynamic systems. SIAM J Math Anal, 1990, 21(3): 493-630.
  • 6Agarwal R K, Halt D W. A modified CUSP scheme in wave/particle split form for unstructured grid Euler flow. Frontiers of Computational Fluid Dynamics, David A. In:Caughey, Mohamed M Hafez, eds. Singapore:World Scientific Publishing Company, 1994. 155-163.
  • 7Chang T, Hsiao L. The Riemann problem and interaction of waves in gas dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics 41. New York: Longman Scientific & Technical, 1989.
  • 8Li J, Zhang T, Yang S. The two-dimensional Riemann problem in gas dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics 98. New York: Longman Scientific and Technical, 1998.
  • 9Sheng W C. The initial value problems for the pressure difference equations in gas dynamics. preprint, 2002.

共引文献5

同被引文献3

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部