期刊文献+

高阶梯度对纳米纤维应变分布的影响

Influence of High-Order Gradient on Strain Distribution of Nanofibers
下载PDF
导出
摘要 研究纳米纤维受拉力作用时静态应变的轴向分布规律.根据弹性梯度理论,提出一个新的本构模型.讨论高阶应变梯度对纳米纤维轴向应变分布的影响.忽略轴向应变高阶小量,通过基本方程和变分原理得到平衡控制方程,再通过变分法和残余权值法,导出全部的经典和非经典边界条件.得到的解析计算结果显示出高阶应变梯度对尺度和边界效应的影响. This paper studies the static strain properties of a gradient nanofiber in tension. A new constitutive model based on gradient elasticity is proposed. The influence of high-order gradient of strain on static analysis of nanofibers is discussed. After neglecting the higher infinitesimal strain along nanofiber' s longitudinal direction, the governing equation of equilibrium is obtained with combination of the basic equation and a proposed variational principle. By using both variational and weighted residuals methods, all classical and nonclassical boundary conditions are determined. Some influences of high-order gradient of stain on size and boundary effects are identified and assessed by analytical expressions.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期404-409,共6页 Journal of Shanghai University:Natural Science Edition
基金 上海市基础研究重点资助项目(04JC14034)
关键词 纳米纤维 高阶应变梯度 变分法 应变分析 nanofibers high-order gradient variational method strain analysis
  • 相关文献

参考文献17

  • 1XU K Y, AIFANTIS E C. Strain analysis of a gradient elastic nanofiber in tension[C]// Proceedings of the 5th International Conference on Nonlinear Mechanics. Shanghai : Shanghai University Press, 2007:532-536.
  • 2AIFANTIS E C. Update on a class of gradient theories [ J ]. Mechanics of Materials, 2003, 35:259-280.
  • 3AIFANTIS E C. Remarks on media with microstructures [J]. Engng Sci, 1984, c22:961-968.
  • 4AIFANTIS E C, LIFANT H. Mechanical measurements at the micron and nanometer scales [ J ]. Mechanics of Materials, 2002, 35:217-231.
  • 5WALGRAEF D, AIFANTIS E C. Dislocation patterning in fatigued metals as a result of dynamical instabilities [ J]. Appl Phys, 1985, 58:688-691.
  • 6TRIANTAFYLLIDIS N, AIFANTIS E C. A gradient approach to localization of deformation ( Ⅰ )-- hyperelastic materials [J]. Elasticity, 1986, 16:225- 238.
  • 7AIFANTIS E C. Gradient deformation models at nano, micro, and macro scales[J].Engng Mater Tech, 1999, a121 : 189-202.
  • 8AIFANTIS E C. Strain gradient interpretation of size effects[J].Fract, 1999, b95:299-314.
  • 9KNAUSS W G, CHASIOTIS I, HUANG Y. Mechanical measurements at the micron and nanometer scales [ J ]. Mechanics of Materials, 2002, 35:217-231.
  • 10AIFANTIS E C. The physics of plastic deformation [ J ]. Plasticity, 1987, 3:211-247.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部