摘要
研究纳米纤维受拉力作用时静态应变的轴向分布规律.根据弹性梯度理论,提出一个新的本构模型.讨论高阶应变梯度对纳米纤维轴向应变分布的影响.忽略轴向应变高阶小量,通过基本方程和变分原理得到平衡控制方程,再通过变分法和残余权值法,导出全部的经典和非经典边界条件.得到的解析计算结果显示出高阶应变梯度对尺度和边界效应的影响.
This paper studies the static strain properties of a gradient nanofiber in tension. A new constitutive model based on gradient elasticity is proposed. The influence of high-order gradient of strain on static analysis of nanofibers is discussed. After neglecting the higher infinitesimal strain along nanofiber' s longitudinal direction, the governing equation of equilibrium is obtained with combination of the basic equation and a proposed variational principle. By using both variational and weighted residuals methods, all classical and nonclassical boundary conditions are determined. Some influences of high-order gradient of stain on size and boundary effects are identified and assessed by analytical expressions.
出处
《上海大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第4期404-409,共6页
Journal of Shanghai University:Natural Science Edition
基金
上海市基础研究重点资助项目(04JC14034)
关键词
纳米纤维
高阶应变梯度
变分法
应变分析
nanofibers
high-order gradient
variational method
strain analysis