期刊文献+

叶绿素缺乏对大豆光系统Ⅱ和光能分配的影响 被引量:6

Effect of Chlorophyll-deficient on PSⅡ and Distribution Properties of Absorbed Light Energy in Leaves of Soybean
下载PDF
导出
摘要 研究田间条件下大豆叶绿素缺乏突变体以及野生型叶片逐步展开过程中的叶绿素含量、气体交换、叶绿素荧光动力学等特性,并分析了二者在叶片展开过程中吸收光能分配的差异。结果表明:叶绿素缺乏导致突变体大豆有活性的PSⅡ反应中心数目减少,每个反应中心的光能吸收和激发能捕获增加,但是PSⅡ电子传递受阻,致使每个反应中心的激发能耗散增加。与野生型相比,突变体大豆叶片所吸收的能量中分配给热耗散的能量较多,而过剩的激发能较少;同时随着叶绿素含量降低,光合电子传递中向光呼吸分配的比例增大。 The chlorophyll contents, gas exchange and chlorophyll fluorescence kinetics were extensively studied in chlorophyll- deficient mutant soybean leaves and its wild-type from emergency to full expansion under field conditions. The difference of the absorbed light distribution between two soybean varieties during the development of leaves was also assessed. Resuits showed that chlorophyll deficient induced a decrease of PS Ⅱ reaction centers, and resulted in an increase of excited energy capture per active reaction centers. It also showed that PS Ⅱ electron transport was blocked apparently, and the energy dissipation increased per PS Ⅱ reaction centers. Compared with wildtype soybean,the mutant had less excitation energy and the fraction of absorbed light allocated to energy dissipation. Furthermore, with the deficiency of the chlorophyll content allocation of photosynthetic electron transport to photorespiration was enhanced.
出处 《大豆科学》 CAS CSCD 北大核心 2009年第4期605-610,共6页 Soybean Science
关键词 大豆 叶绿素缺乏 突变体 PSⅡ反应中心 光能分配 Soybean Chlorophyll - deficient Mutant PS Ⅱ reaction centers Distribution of light energy
  • 相关文献

参考文献16

  • 1Bj rkman O, Demming- Adams B. Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants [ C ]. Berlin : Springer, 1994 : 17- 47.
  • 2Osmond C B, Grace S C. Perspective on photoinhibition and photorespiration in the field : Quintessential inefficiencies of the light and dark reactions of photosynthesis[ J]. Journal of Experimental Bota- ny, 1995,46 : 1351-1362.
  • 3Aronn D I. Copper enzymes in isolated Chloroplasts polyphenoloxidase in Bera Vulgaris [ J ]. Plant Physiol, 1949,24 : 1-15.
  • 4Cao J, Govindjee. Chlorophyll a fluorescence transient as indicator of active and inactive photosystem Ⅱ in thylakoid membranes [ J ]. Biochimica at Biophysica Acta, 1990,1015 : 180-188.
  • 5Strasser B J, Strasser R J. Measuring fast fluorescence transients to address environmental questions : The JIP test [ C ]. Kluwer Academic, Dordrecht. 1997 : 977 - 980.
  • 6Detaining- Adams B, Adams W W Ⅲ, Baker D H, et al. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation [ J ]. Physiologia Plantarum, 1996,98:253-264.
  • 7Krall J P, Edward G E. Relationship between photosystem Ⅱ activity and CO2 fixation in leaves [ J ]. Physiologia Plantarum, 1992,86: 180-187.
  • 8Epron D, Godard D, Comic G, et al. Limitation of net CO2 assimilation rate by internal resistance to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill. ) [ J]. Plant, Cell and Environment, 1995,18:43- 51.
  • 9Ogren E. Prediction of photoinhibition of photosystems from measurements of fluorescence quenching components [ J ]. Planta, 1991, 184:538-544.
  • 10Strasser B J. Donor side capacity of photosystem Ⅱ probed by chlorophyll a fluorescence transients [ J ]. Photosynthesis Research, 1997,52 : 147-155.

二级参考文献17

  • 1[1]Arnon DI (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol, 24: 1-15
  • 2[2]Briantais JM, Vernotte C, Picaud M, Krause GH (1980). Chlorophyll fluorescence as a probe for the determination of the photo-induced proton gradient in isolated chloroplasts. Biochim Biophys Acta, 591: 198-202
  • 3[3]Demmig-Adams B (1990). Carotenoids and photoprotection in plants. A role for the xanthophyll zeaxanthin. Biochim Biophys Acta, 1020: 1-24
  • 4[4]Demmig-Adams B, Adams WW III (1996). Using chlorophyll fluorescence to assess the fration of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant, 98: 253-264
  • 5[5]Frank H, Cua A, Chynwat V, Yooung A, Gosztola D, Wasielewaki MR(1994). Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth Res, 41: 389-395
  • 6[6]Gilmore AM(1997). Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant, 99: 197-209
  • 7[7]Horton P, Ruban AV, Rees D, Pascal AA, Noctor G, Young AJ (1991). Control of the light-harvesting function of chloroplast membranes by aggregation of the LHC II chlorophyll-protein function. FEBS Lett, 292:1-4
  • 8[8]Hulsebosch RJ, Hoff AJ, Shuvalov VA (1996). Influence of KF, DCMU and removal of Ca2+ on the high-spin EPR signal of the cytochrome b-559 heme Fe (III) ligated by OH- in chloroplasts. Biochim Biophys Acta, 1277: 103-106
  • 9[9]Morales F, Abadia A, Abadia J (1998). Photosynthesis, quenching of chlorophyll fluorescence and thermal energy dissipation in iron-deficient sugar beet leaves. Aust J Plant Physiol, 25: 403-412
  • 10[10]Niyogi KK (1999). Photoprotection revisited: Genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol, 50: 333-359

共引文献25

同被引文献93

引证文献6

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部