期刊文献+

微生物燃料电池产电研究及微生物多样性分析 被引量:6

Electricity Generation by and Microbial Diversity Analysis of Microbial Fuel Cell
下载PDF
导出
摘要 以乙酸钠为阳极底物,碳毡材料为阴阳电极,构建了无介体双室微生物燃料电池(Microbial fuel cell,MFC),研究不同阴极受体、外接电阻、乙酸钠浓度和不同接种方式等因素对电池产电性能的影响.根据不同接种方式下微生物燃料电池产电性能差异,利用PCR-DGGE技术对不同接种方式下的微生物多样性进行分析.研究结果表明:在500mL的阴阳极反应体系中,当接入500Ω外电阻,阴极电子受体为高锰酸钾,阳极乙酸钠质量浓度为6.46g/L,只接入附着有大量微生物的电极时,微生物燃料电池产电性能最好,最大电功率密度可达353.57mW/m2,库伦效率为39.35%;微生物多样性分析显示,δ-变形菌纲、β-变形菌纲和拟杆菌门的菌种更适应微生物燃料电池的运行环境,能在电极上大量富集,提高电池的产电性能,是电极上的优势菌群. A mediator-less two-chambered microbial fuel cell (MFC) was constructed with sodium acetate as substrate in the anode and carbon felt as cathode. The effects of different electron acceptors in the cathode, external resistances value, concentration of sodium acetate and different inoculation ways on electricity generation by the MFC were investigated. Based on the difference in electricity generation by different inoculation methods, the microbial diversity was analyzed by PCR- DGGE technology. The results showed that the maximum power density of 294.72 mW/m2 and the coulombic efficiency of 25.87% were achieved when external resistance was 500 ~2, potassium permanganate used as electron acceptor in the cathode, sodium acetate concentration 6.46 g/L and electrode attached by microbes as the inoculum in the anode. The analysis of microbial diversity showed that 6-proteobacterium, fl-proteobacterium and bacteroidetes adapted themselves to the running environment of MFC. They could be enriched in the anode and improve the electricity generation. Fig 8, Tab 1, Ref21
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2009年第4期568-573,共6页 Chinese Journal of Applied and Environmental Biology
关键词 双室微生物燃料电池 无介体 产电 厌氧污泥 微生物多样性 two-chambered microbial fuel cell mediator-less electricity generation anaerobic sludge microbial diversity
  • 相关文献

参考文献21

  • 1Liu H, Cheng S, Logan BE. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol, 2005, 39:5488-5493.
  • 2冯雅丽,联静,杜竹玮,李浩然.无介体微生物燃料电池研究进展[J].有色金属,2005,57(2):47-50. 被引量:17
  • 3Chaudhuri SK, Lovley DR. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol, 2003, 21 (10): 1229-1232.
  • 4Lovley DR. Microbial fuel cells: Novel microbial physiologies and engineering approaches. Curr Opin Biotechnol, 2006, 17:327-332.
  • 5Biffinger JC, Pietron J. A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosensors & Bioelectronics, 2007, 22:1672-1679.
  • 6Susan E. Childers, Stacy Ciufo, Lovley DR. Geobacter metallireducens accesses insoluble Fe (Ⅲ) oxide by chemotaxis. Nature, 2002, 416: 767-769.
  • 7Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. Extracellular electron transfer via microbial nanowires. Nature, 2005, 435 (43): 1098-1101.
  • 8Bond DR, Holmes DE, Tender LM, Lovley DR. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 2002, 295:483-485.
  • 9Davis F, Higson SePJ. Biofuel cells--Recent advances and applications. Biosensors & Bioelectronics, 2007, 22:1224-1235.
  • 10Balch WE, Fox GE, Magrum L J, Woese CR, Wolfe RS. Methanogens: Reevaluation of a unique biological group. Microbobiol Rev, 1979, 43 (2): 260-296.

二级参考文献31

共引文献124

同被引文献96

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部