期刊文献+

(0,δ~M)三角插值多项式对函数及其导数的同时逼近 被引量:2

The(0,δ~M) trigonometric interpolation polynomials'simultaneous approximation of functions and their derivatives
下载PDF
导出
摘要 证明了(0,δ~M)三角插值多项式L_(n,t)^((M))(f,x)的s(s=0,1,2,…,q)阶导数一致收敛于函数f(x)的s(s=0,1,2,…q)阶导数:设f(x)∈C_(2π),f(x)具有q阶连续导数,且f^((q))(x)∈Lipα,0<α<1,若β_k=O((|sin^M(nh)|)/n^(q+a))(k=0,1,2,…,n-1),则|[L_(n,t)^((M))(f,x)]^((s))-f^((x))(x)|=O((lnn)/n^(q-s+a))(s=0,1,2,…,q)。 It is proved in this paper that, the derivative of (0,δ^M)trigonometric interpolation polynomial Ln,ε^(M)(f,x)converges uniformly to f(s) (x), (s=0,1,2,…,q), if f(x)∈C2π,f(x) has qth continuous derivatives, and f(q(x)∈Lipα,0〈α〈1, if βk=O(|sin^M(nh)|/n^qα)(k=0,1,2,…,n-1), then |Ln,ε^(M)(f,x)^(s)-f(s)(x)|=O(1nn/n^qs+α)(s=0,1,2,…,q).
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期197-200,204,共5页 Journal of Central China Normal University:Natural Sciences
基金 教育部科学技术研究重点项目(208160) 宁夏自然科学基金项目(NZ0835) 宁夏大学青年科学基金项目(QN200701)
关键词 (0 δ^M)插值 一致收敛 导数 (0,δ^M)interpolation converges uniformly derivative
  • 相关文献

参考文献7

二级参考文献14

  • 1侯象乾.一个双周期缺项整插值问题[J].Journal of Mathematical Research and Exposition,1995,15(3):381-387. 被引量:6
  • 2Sharma A,Approx Theory Appl,1992年,8期,1页
  • 3Liu Y P,Approx Theory Its Appl,1990年,6卷,4期,85页
  • 4Sharma A,Varma A K. Lacunary trigonometric interpolation on equidistant nodes (convergence)[J].Journal of Approximation Theory,1982,35:45-52.
  • 5Szabados J,Varma A K, Selvaraj C R.Error estimates of a general lacunary trigonometric interpolation on equidistant nodes[J].Studia Scientiarum Mathematicarum Hungarica,1988,23:215-228.
  • 6Sharma A,Varma A K.Trigonometric interpolation[J].Duke Math J,1965,32:341-357.
  • 7Liu Yongping.On the trigonometric interpolation and the entire interpolation[J].Approx Theory and Appl,1990,6(4):85-106.
  • 8Varma A K.Simulatneous approximation of periodic conti-nuous functions and their derivatives[J].Approximation of Periodic Continuous Functions,1968,6:67-73.
  • 9Butzer P L,Nessel R J.Fourier Analysis and Approximation[M]. New York:Academic Press,1971.
  • 10Zygmund A.Trigonometric Series(Second Edition)[M]. Cambridge:Cambridge University Press, 1979.

共引文献18

同被引文献16

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部