期刊文献+

基于FPGA的新型混沌产生器的实现 被引量:1

Realization of a new type of chaotic generator based on FPGA
下载PDF
导出
摘要 分析了混沌产生器的主要特征,基于数字化处理技术,通过对系统的连续时间状态方程进行离散化处理和变量比例变换,进一步用FPGA技术硬件实现,通过转折值a在0<a≤1范围变化,系统可产生双层单螺旋、单层单螺旋、双层双螺旋和单层双螺旋的四种不同类混沌吸引子。本文先进行计算机模拟仿真,随后应用FPGA技术产生混沌吸引子的一般原理给出其硬件实验电路。 This paper analyzes the characteristic of the chaotic generator presented, bases on the digital processing technology, realizes the generating chaotic attractors by discreating the state equation of continuous time, ratio transformation of variable, and field programmable gate array(FPGA) hardware approach, then changes the breakpoint a varies in the range of0〈a≤1, the double-layer single spiral, single-layer single spiral, double-layer double spiral and single-layer double spiral chaotic attractors can be generated. The paper shows the result of chaotic attractors by computer simulation ,then we propose a general design principle of FPGA technology for chaos generation and provide a experiment circuit.
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期230-234,共5页 Journal of Central China Normal University:Natural Sciences
关键词 混沌产生器 双层双螺旋 双层单螺旋 计算机仿真 FPGA硬件实现 chaotic generator double-layer double spiral doubleqayer single spiral computer simulation FPGA hardware realization
  • 相关文献

参考文献10

二级参考文献72

  • 1[1]Matsumoto T, Chua L O, Komuro M 1985 IEEE Trans. CAS- Ⅰ 32 798
  • 2[2]Yin Y Z 1997 Int. J. Bifurc. Chaos 7 1401
  • 3[3]Matsumoto T, Chua L O, Kobayashi K 1986 IEEE Trans. CAS- Ⅰ 33 1143
  • 4[4]Cuomo K M, Oppenheim A V, Strogatz S H et al 1993 IEEE Trans. CAS- Ⅱ 40 626
  • 5[5]Yalcin M E, Suykens J A K, Vandewalle J 2000 IEEE Trans. CAS- Ⅰ 47 425
  • 6[6]Tang W K S, Zhong G Q, Chen G et al 2001 IEEE Trans. CAS- Ⅰ 48 1369
  • 7[7]Li J F, Li N 2002 Chin. Phys. 11 1124
  • 8[8]Liu C X 2002 Acta Phys. Sin. 51 1198 (in Chinese)[刘崇新 2002 物理学报 51 1198]
  • 9[12]Yu S M, Qiu S S, Lin Q H 2003 Sci. Chin. F 46 104
  • 10[13]Sprott J C 1994 Phys. Rev. E 50 R647

共引文献76

同被引文献9

  • 1ARAKI S,MIYAZAKI T,UEHARA S,Analysis for Pseu- dorandom Number Generators Using Logistic Map [ C ]// ISITA ,2006 : 772-775.
  • 2DABAL P,PELKA R. A Chaos-based Pseudo-random Bit Generator Implemented in FPGA Device [ C ] // IEEE International Symposium on DDECS, 2011 : 848-859.
  • 3HAN Chunyan,WANG Guangyi, ZHANG Bo. Quantitative Analyses on the Finite Precision Effect of Computerized Logistic Map [ C ]///WCSP, 2009 : 365- 368.
  • 4ARAKI S,MIYAZAKI T,UEHARA S. A Study on Occur- rence Rates per Bit for the Logistic Map over Integers [ C ]//ISITA, 2008 : 1 350-1 354.
  • 5ARAKI S,MIYAZAKI T, UEHARA S.Some Properties of Logistic Maps over Integers [ C ] //IEICE, 2010:2 258- 2 265.
  • 6ARAKI S, M1YAZAKI T, UEHARA S. Suitable Represen- tation of Values on the Logistic Map with Finite Precision [ C]//ISITA,2010: 577-582.
  • 7SANG Tao, WANG Ru-li, YAN Yi-xun. Perturbance- based Algorithm to Expand Cycle Length of Chaotic Key Stream [ C ] //Inst. of Tech. Phys., Acad. Sinica, 1998: 873-874.
  • 8NIST,A Statistical Test Suite for Random and Pseudoran- dora Number Generators for Cryptographic Applications [ R 1- Special Publication, 2001 : 354- 358.
  • 9CHENG M H. Generalised Berlckamp-massey Algorithm [ C 1//lEE Proceedings, 2002:207-210.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部