期刊文献+

Hilbert-Huang变换及其滤波特性研究 被引量:3

A study of Hilbert-Huang transform and its filtering character
下载PDF
导出
摘要 Hilbert-Huang变换是最新发展起来的处理非线性非平稳信号的时频分析方法。其基本的实现分为两步,经验模态分解和瞬时频率的求解。这种方法的核心部分是经验模态分解,任何复杂的信号都可以分解为有限数目并且具有一定物理意义的本征模态函数,对这些本征模态函数作Hilbert变换即可得到每一个本征模态函数的瞬时频率。经验模态分解方法是一个以信号极值特征尺度为度量的时空滤波过程,它充分保留了信号的局部特征,在信号的滤波和去噪中具有较大的优势。本文讨论了Hilbert-Huang变换时空滤波的实现过程,仿真验证了该方法的优越性。 Hilbert-Huang Transform (HHT) is a new two-step time frequency analytic method to analyze the non-linear and non-stationary signal. The key step of this method is empirical mode decomposition (EMD) method with which any complicated data set can be decomposed into several Intrinsic Mode Function (IMF) components. Using Hilbert transform to those IMF components can yield instantaneous frequency. The empirical mode decomposition (EMD) can be interpreted as a temporal and spatial filtering based on the signal's extremum characteristic scale. This method preserves the nonlinearity and non-stability of signal, and has potential superiority in filtering and de-noising. The experimental results clarify the advance and efficient of this method.
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期235-238,共4页 Journal of Central China Normal University:Natural Sciences
基金 湖北省自然科学基金创新群体项目(2006ABC011)
关键词 Hilbert—Huang变换 经验模态分解(EMD) 时空滤波 信号去噪 Hilbert Huang Transform (HHT) empirical mode decomposition(EMD) time-space filter signal de noising
  • 相关文献

参考文献7

  • 1Donoho D L. Wavelet shrinkage asymptopia [J]. IEEE Transaction on Information, 1995,41 (3) : 613-627.
  • 2Donoho D L. Adapting to unkown soothmess via waveletshrinkage[J]. J Amer Statist Assoc, 1995,90:1200-1224.
  • 3Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proc R Soe Lond A,1998,454:899-995.
  • 4Huang N E, Shen Z, Long S R et al. A new view of the nonlinear water waves: The Hilbert spectrum [J]. Annu Rev Fluid Mech, 1999,31:417-457.
  • 5Flandrin P, Rilling G, Goncalves G. Empirical mode decomposition as a filter bank[J]. IEEE Signal Processing Letters, 2004,11(2):112-114.
  • 6陈东方,吴先良.采用EMD方法消除瞬态散射回波中的高斯白噪声干扰[J].电子学报,2004,32(3):496-498. 被引量:26
  • 7Boudraa A O, Cexus J C, Saidi Z. EMD-based signal noise reduction[J]. IJSP, 2004,1 ( 1 ) : 33-37.

二级参考文献3

共引文献25

同被引文献21

  • 1全海燕,王威廉.Hilbert-Huang变换及其在心音信号分析中的应用[J].信号处理,2003,19(z1):312-315. 被引量:3
  • 2李钊,周晓军,徐云.基于均生函数周期叠加外推法的EMD端点问题的研究[J].振动与冲击,2013,32(15):138-143. 被引量:12
  • 3刘慧婷,倪志伟,李建洋.经验模态分解方法及其实现[J].计算机工程与应用,2006,42(32):44-47. 被引量:28
  • 4Norden E, Huang Zheng-shen, Steven R L, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis [J]. Proceedings of the Royal Society, 1998 ( 454 ): 903-995.
  • 5王林鸿,吴波,杜润生,杨叔子.液压缸运动的非线性动态特征[J].机械工程学报,2007,43(12):12-19. 被引量:72
  • 6Huang N E,Shen Z, Long S R, et al. The empirical mode decom- position and the Hilbert spectrum for nonlinear and non-stationary time series analysis [ J ]. Proceedings of the Royal Society of London Series A, 1998,454:903 - 995.
  • 7Sobieski I P, Kroo I M. Collaborative optimization using response surface estimation [ J]. AIAA Journal, 2000,38 (10) : 1931 - 1938.
  • 8Li P B, Kothari V,Terry B S. Processing and analysis of small in- testine pressure signal based on empirical mode decomposition [ J ]. Journal of Medical Devices, 2015,19 ( 1 ) :45 - 62.
  • 9Tang Y W, Lin Y D. L2-EMD filter design for photoplethysmogra- phy signal[ J]. Applied Mechanics & Materials, 2014, 479/480: 486 - 490.
  • 10Park M, Kim D, Oh H S. A reinterpretation of EMD by cubic spline interpolation [ J ]. Advances in Adaptive Data Analysis, 2012, 3(4) :527 -540.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部