期刊文献+

改进的OLS算法选择RBFNN中心的方法 被引量:1

RBFNN center choice method based on Kohonen network and OLS algorithm
下载PDF
导出
摘要 提出了一种优化选择径向基神经网络数据中心的算法,该算法结合了Kohonen网络的模式分类能力,将初步分类结果用做RBFNN的初始数据中心,然后采用OLS算法进行优化选择,对比仿真实验表明该算法效果比单独使用OLS算法生成的RBFNN性能更好。 This article proposes an optimized choice radial basis function neural network data central algorithm.This algorithm unifies the Kohonen network's pattern classification ability,classifies firstly the result to make RBFNN the initial data center,and then uses the OI.S algorithm to carry on optimized choice.The contrast simulation experiments indicate that this algorithm produces better RBFNN performance than using OLS algorithm independently.
作者 郑明文
出处 《计算机工程与应用》 CSCD 北大核心 2009年第25期52-54,97,共4页 Computer Engineering and Applications
关键词 RBF神经网络(RBFNN) 数据中心 KOHONEN 网络 正交最小二乘法 Radial Basis Function Neural Network(RBFNN) data center Kohonen network Orthogonal Least Squares(OLS) method
  • 相关文献

参考文献7

  • 1魏海坤,李奇,宋文忠.梯度算法下RBF网的参数变化动态[J].控制理论与应用,2007,24(3):356-360. 被引量:13
  • 2Zhao Zhong-qiu,Huang De-shuang.A mended hybrid learning algorithm for radial basis function neural networks to improve generalization capability [J].Applied Mathematical Modelling,2007,31: 1271-1281.
  • 3Paetz J.Reducing the number of neurons in radial basis function networks with dynamic decay adjustment[J].Neurocomputing,2004, 62:79-91.
  • 4Benoudjit N,Verleysen M.On the kernel widths in radial-basis function networks[J].Neural Processing Letters, 2003,18 : 139-154.
  • 5Guyon I,Elisseeff A.An introduction to variable and feature selection[J].Journal of Machine Learning Research, 2003,3 : 1157-1182.
  • 6Chen S,Billings S A,Luo W.Orthogonal least squares methods and their application to non-linear system identicfication[J].Int J Contr, 1989,50(5 ) : 1876-1896.
  • 7陈德军,胡华成,周祖德.基于径向基函数的混合神经网络模型研究[J].武汉理工大学学报,2007,29(2):122-125. 被引量:11

二级参考文献14

  • 1魏海坤,宋文忠,李奇.非线性系统RBF网在线建模的资源优化网络方法[J].自动化学报,2005,31(6):970-974. 被引量:6
  • 2Wang L X,Mendel J M.Fuzzy Basis Functions,Universal Approximation,and Orthogonal Least-squares Learning[J].Neural Networks,IEEE Transactions,1992,3(5):807-814.
  • 3Chen S,Cowan C F N,Grant P M.Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks[J].Neural Networks,IEEE Transactions,1991,2(2):302-309.
  • 4Breiman L.Classification and Regression Trees[M].Belmont:Wadsworth International Group,1984.
  • 5Friedman J H.Multivariate Adaptive Regression Splines[J].The Annals of Statistics,1991,19(2):1-141.
  • 6Quinlan J R.Induction of Decision Trees[J].Machine Learning,1986,1(3):81-106.
  • 7HAYKIN S.Neural Networks:A Comprehensive Foundation[M].New York,NY:Prentice Hall,1997.
  • 8KARAYIANNIS N,RANDOLPH-GIPS M.On the construction and training of reformulated radial basis function neural networks[J].IEEE Trans Neural Networks,2003,14(4):835-846.
  • 9PLATT J.A resource-allocating network for function interpolation[J].Neural Computation,1991,3(2):213-225.
  • 10YINGWEI L,SUNDARARAJAN N,SARATCHANDRAN P.A sequential learning scheme for function approximation and using minimal radial basis neural networks[J].Neural Computation,1997,9(2):1-18.

共引文献20

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部