期刊文献+

湿地遥感图像分割算法设计及实现 被引量:1

Design and realization of wetland remote sensing image segmentation method
下载PDF
导出
摘要 提出了一种结合熵和模糊C均值的聚类分割方法。模糊C均值(FCM)聚类算法广泛用于图像的自动分割,但是传统的FCM算法没有考虑像素的空间信息,因而对噪声十分敏感,基于二维直方图的模糊C均值聚类算法除了考虑像素点的灰度信息外还考虑了像素点邻域的空间信息,可有效地抑制噪声;在目标函数中引入熵项则能更好地抑制噪声和外围点对类中心估计的影响。实验分析结果表明,算法对湿地遥感图像的分割效果优于FCM算法。 A new effective multi-thresholds image segmentation method based on two-dimensional histogram FCM & entropy clustering is presented.Fuzzy C-means clustering algorithm has been widely used in automated image segmentation.However,the conventional FCM algorithm is noise sensitive because of not taking account of the spatial information.Fuzzy C-means clustering algorithm based on two-dimensional histogram is robust for noise,because it utilizes the gray level information of each pixel and its spatial correlation information within the neighborhood.The entropy term is introduced in object function that can suppress noise effectively and reduce influence of estimation of the cluster centers.Experimental results indicate that the new algorithm is better than FCM algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第25期160-162,共3页 Computer Engineering and Applications
基金 长沙理工大学创新团队计划No.2007CX05 博士基金No.1004154~~
关键词 模糊C均值聚类 二维直方图 遥感图像 图像分割 fuzzy C-means clustering two-dimensional histogram entropy remote sensing image image segmentation
  • 相关文献

参考文献6

二级参考文献22

  • 1K S Fu,J K Mui.A survey on image segmentation[J].Pattem Recognition, 1981 ; ( 13 ) :3-6.
  • 2N K Pal,S K Pal.A review on image segmentation techniques[J]. Pattern Recognition, 1993 ;26(9) : 1277-1294.
  • 3J C Bezdek.Pattern recognition with fuzzy objective function algorithms[M].New York : Plenum Press, 1981.
  • 4R L Cannon,J Dave,J C Bezdek.Efficient implementation of fuzzy cmeans clustering algorithms[J].IEEE Trans, 1986;PAMI-8(2) :248-255.
  • 5章毓晋.图像分割[M].北京:科学出版社,2001..
  • 6Abutaleb A S. Automatic thresholding of gray-level pictures using two-dimensional entropy[J]. Computer,Vision Graphic Image Process, 1989,47 (1) : 22-32.
  • 7Shanbhag A G. Utilization of information measure as a means of image thresholding [J].Computer Vision,Graphics,Image Processing-Graphical Model and Image Processing, 1994,56(5) : 414-419.
  • 8Juliana F, Camapum W, Mark H F. Spatial-feature parametric clustering applied to motion-based segmentation in camouflage [J]. Computer Vision and Image Understanding, 2002,85 (2) : 144-157.
  • 9Constantine K, Ioannis P. Segmentation of ultrasonic images using support vector machines[J]. Pattern Recognition Letters, 2003, (24) : 715-727.
  • 10Bhanu B,Lee S,Ming J.Self-optimizing image segmentation system using a generic algorithm[A].Proc of the 4th Int Conf on Generic Algorithms[C]. San Diego:Morgan Kaufmann Publishers, 1991 : 362-369.

共引文献35

同被引文献11

  • 1Jain A K. Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs, NJ,1986.
  • 2Yong Y, Chongxun Z, Pan L. Image thresholding based on spatially weighted fuzzy c-means clustering [A]. The Fourth International Conference on Computer and Information Technology, CIT'04[C]. Wuhan: IEEE Press, 2004, 184-189.
  • 3Zhu H, Fu Z Z, Li Z M. A new image thresholding method based on relative entropy[A]. IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions [C]. New York: IEEE Press, 2002, 634-638.
  • 4Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms [M]. New York: Plenum Press,1981.
  • 5Pham DL, Prince JL. An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities. 1999, (20) :57-68.
  • 6MaL, Staunton RC. Amodified fuzzy C-means image segmentation algorithm for use with uneven illumination patterns?? Pattern Recognition, 2007, (40): 3005-3011.
  • 7Wu X H, Zhou J J. Alternative Possibilistic Fuzzy c-Means Clustering Algorithm [J]. Journal of Computational Information Systems, 2006, 2(3): 925-931.
  • 8Bin Wu, Improved Possibilistic Clustering Algorithm with Optimized Parameters[C], APYCC,2010,VOLS 1 and 2:1031-1034.
  • 9Zhang J S, Leung Y W. Improved possibilistic c-means clustering algorithms [J]. IEEE Trans. Fuzzy Systems, 2004, 12 (2): 209-217.
  • 10Yang M S, Wu K L. Unsupervised possibilistic clustering [J]. Pattern Recognition, 2006, 39 (1): 5-21.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部