期刊文献+

立式蒸发式冷凝器传热传质的CFD模拟 被引量:8

The CFD Simulation on Heat and Mass Transfer of Vertical Evaporative Condenser
下载PDF
导出
摘要 基于VOF算法,建立了立式蒸发式冷凝器气-液两相顺流传热传质的计算模型。根据CFD模型,计算了在不同气、液相进口条件下,管壁温度的分布、气-液相界面处潜热和显热换热量的关系,模拟得到的管壁温度分布与实验数据吻合很好。计算结果表明,降低进口空气的相对湿度、增大气相流速或者液相流量,都可增强气-液相间热质交换的剧烈程度;气-液相界面处的换热主要形式是由于水蒸发引起的潜热换热,占80%以上,它远远大于由于温度梯度而引起的显热换热量;气-液相界面处的蒸发潜热主要受空气的相对湿度影响,其次是气相流速和液相流量。 Based on the volume of fluid method (VOD), a computational fluid dynamics model (CFD) was established for predicting the heat and mass transfer process of the gas-liquid concurrent-flow used as cooling medium flowing in the tube-side of a vertical evaporative condenser. The proposed CFD model was used to analyze the temperature profiles on the tube wall and the relative relationship between the latent heat transfer and sensible heat transfer through the gas-liquid interface under different gas-liquid inlet conditions. The results show that, according to the CFD model, the calculated temperature distributions along the tube wall at different liquid flow rates and gas flow velocities agree well with the experimental data. The simulations also reveal that the main part of the heat transfer on the gas-liquid interface is the latent heat transfer caused by evaporation, which is much greater than the sensible heat transfer caused by the temperature gradient; the amount of latent heat transfer is above 80% of the total heat transfer of the gas-liquid interface. Since the evaporative latent heat transfer depends mainly on the air relative humidity, and secondly on the gas velocity and liquid flow rate, it was found that the heat and mass transfer process through the gas-liquid interface can be enhanced by lowering the relative humidity of the gas flow, or increasing the gas velocity or liquid flow rate.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2009年第4期566-571,共6页 Journal of Chemical Engineering of Chinese Universities
基金 国家"863"高技术研究发展专题课题(2007AA05Z200) 广东省关键领域重点突破科技计划项目(2007A010701001)
关键词 竖管 蒸发式冷凝器 传热传质 计算流体力学(CFD) vertical tube evaporative condenser heat and mass transfer computational fluid dynamics (CFD)
  • 相关文献

参考文献11

  • 1Armbruster R, Mitrovic J. Heat transfer in falling film flow on horizontal robe [A]. Proceedings of 30th National Heat Transfer Conference [C]. Portland, USA: ASME, 1995, vol. 12:13-21.
  • 2Rogers J T. Laminar falling film flow and heat transfer characteristics on horizontal tubes [J]. Canadian Journal of Chemical Engineering, 1981, 59(8): 213-222.
  • 3蒋翔,朱冬生,唐广栋,汪南.来流速度分布对蒸发式冷凝器性能的影响[J].华南理工大学学报(自然科学版),2006,34(8):55-60. 被引量:20
  • 4Perez-Blanco H, Bird W A. Study of heat and mass transfer in a vertical-tube evaporative cooler [J]. Int J of Heat and Mass Transfer, 1984,160(9): 210-215.
  • 5Chun K R, Seban R A, Heat transfer to evaporating liquid film [J]. J Heat Transfer, 1971, 93(3): 391-396.
  • 6Seban R A, Faghri. Evaporation and heating with turbulent falling liquid films [J]. J Heat Transfer, 1976, 98(2): 315-318.
  • 7Kachhwaha S S, Dhar P L, Kale S R. Experimental studies and numerical simulation of evaporative cooling of air with a water spray [J]. Int J of Heat and Mass Transfer, 1998, 41(2): 447-474.
  • 8Tsay Y L, Lin T F. Evaporation of a heated falling liquid film into a laminar gas stream [J]. Experimental Thermal and Fluid Science, 1995, 11(7): 61-71.
  • 9谷芳,刘春江,余黎明,周超凡,袁希钢,余国琮.气-液两相降膜流动及传质过程的CFD研究[J].高校化学工程学报,2005,19(4):438-444. 被引量:32
  • 10Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. J Comp Phys, 1981, 39(2): 201-225.

二级参考文献21

  • 1屈盛官,夏伟,黄荣华,成晓北.发动机气缸盖冷却水流动试验及CFD分析[J].华南理工大学学报(自然科学版),2004,32(8):42-46. 被引量:12
  • 2简弃非,甘庆军,许石嵩.换热器翅片表面空气流动热力过程的数值模拟[J].华南理工大学学报(自然科学版),2004,32(9):67-71. 被引量:21
  • 3Wasden F K, Dukler A E. Numerical investigation of large wave interactions on free falling films [J]. Int J Multiphase Flow, 1989, 15: 357-370.
  • 4Szulczewka B, Zbicinski I, Górak A. Liquid flow on structured packing: CFD simulation and experimental study [J]. Chem Eng Technol, 2003 26(5):580-584.
  • 5Negny S, Meyer M, Preost M. Study of a laminar falling film flowing over a wavy wall column: Part Ⅰ. Numerical investigation of the flow pattern and the coupled heat and mass transfer [J]. Int J Heat and Mass Transfer, 2001, 44:2137-2146.
  • 6Negny S, Meyer M, Preost M. Enhancement of absorption efficiency for a laminar film flow by hydrodynamic conditions generated by a new type of column wall [J]. Chem Eng J, 2001, 83: 7-13.
  • 7Miyara A. Numerical simulation of wavy liquid film flowing down on a vertical wall and an inclined wall [J]. Int J Therm Sci, 2000, 39: 1015-1027.
  • 8Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. J Comp Phys, 1981, 39: 201-225.
  • 9Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension [J]. J Computational Phy, 1992, 100:335-354.
  • 10Hewitt G F, Whalley P B. The correlation of liquid entrained fraction and entrainment rate in annular tow-phase flow [Z]. UKAEA Report AERE-9187, 1978.

共引文献49

同被引文献110

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部