期刊文献+

非线性回归的自动化建模过程

Nonlinear Regression Automatic Modeling Process
原文传递
导出
摘要 提出一种非线性回归的自动化建模过程。文中将基于Gram-Schmidt过程的回归方法与交叉有效性分析相结合,首先构造出备选的回归模型集合,然后通过进行多次交叉有效性验证的方法,对构造出的一系列的备选模型,采用投票方式,挑选出被选中次数最多的模型作为最终确定的回归模型。该建模过程形成一种自动确定非线性回归模型的机制。仿真研究表明,采用本文所提出的自动化建模方法,可以合理有效地确定最终模型,并且模型具有良好的稳健性和预测效果。 A nonlinear regression automatic modeling process was proposed in this paper. First, a set of candidate regression models were constructed based on Gram-sehmidt process with cross-validation analysis; then, cross-validation method was repeatedly used to find the models for votes. The model getting most votes was selected as the final regression model. Therefore, an automatic determining mechanism of nonlinear regression model can be obtained through modeling process. Simulation indicates the proposed automatic modeling method proposed can determine the final model rationally and effectively, and the selected model possesses a good robustness and predictive ability.
出处 《系统工程》 CSCD 北大核心 2009年第7期81-84,共4页 Systems Engineering
基金 国家自然科学基金创新研究群体科学基金资助项目(70521001) 国家自然科学基金重点资助项目(70531010) 国家自然科学基金资助项目(70771004)
关键词 非线性回归 模型选择 Gram—Schmidt过程 交叉有效性 Nonlinear Regression Model Selection Gram-Schmidt Process Cross-Validation
  • 相关文献

参考文献5

  • 1内特等.应用线性回归模型[M].张勇,王国明,赵秀珍译.北京:中国统计出版社,1990:101-116.
  • 2Wold S, et al. The multivariate calibration problem in chemistry solved by the PLS method[A]. Proc. conf. matrix pencils, Lectures notes in mathematics [C]. Heidelberg: Springer-Verlag,1983.
  • 3王惠文,陈梅玲,Gilbert Saporta.Gram-Schmidt回归及在刀具磨损预报中的应用[J].北京航空航天大学学报,2008,34(6):729-733. 被引量:14
  • 4Soulie-Fogelman F. L'industrialisation des Analyses - Besoins, Outils & Application[Z]. Conference de Knowledge Extraction Engines, 2006.11. INA-PG.
  • 5Witten I H,Frank E.数据挖掘实用机器学习技术[M].北京:机械工业出版社,2006

二级参考文献7

  • 1Hoerl A E. Application of ridge analysis to regression problems [J]. Chemical Engineering Progress, 1962,58:54 - 59
  • 2Neter J, Wasserman W, Kutner M H. Applied linear regression models[ M ]. New York: Richard D Irwin Ine,1983
  • 3Wold S, Martens H, Wold H. The multivariate calibration problem in chemistry solved by the PLS method [C]//Ruhe A, Kagstrom B. Proc Conf Matrix Pencils, Lectures Notes in Mathematics. Heidelberg: Springer-Verlag, 1983
  • 4Tenenhaus M. La regression PLS theorie et pratique[M]. Paris: Editions Technip, 1998
  • 5Jaln S K, Gunawardena A D. Linear algebra: an interactive approach [ M ]. Beijing : China Machine Press ,2003
  • 6Lazraq A, Cleroux R, Gauchi J P. Selecting both latent and explanatory variables in PLS1 regression model [J]. Chemometrics and Intelligent Laboratory Systems,2003,66 : 117 - 126
  • 7刘强,尹力.一种简化递推偏最小二乘建模算法及其应用[J].北京航空航天大学学报,2003,29(7):640-643. 被引量:7

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部