期刊文献+

基于优势肽和免疫记忆的混合蚁群算法 被引量:2

Hybrid Ant Colony Algorithm Based on the Superior Peptide and Immune Memory
下载PDF
导出
摘要 为了克服基本蚁群算法求解速度慢、易于出现早熟和停滞现象的缺陷,借鉴免疫算法中的免疫记忆和优势肽选择继承的思想,提出了基于优势肽和免疫记忆的混合蚁群算法(SPIM-ACA)。该算法在原有蚁群模型基础上增加内部记忆库,将记忆库中的解对应免疫抗体,将问题对应为抗原,运用免疫算子和优势肽选择算法进行新解的构造和记忆库的更新。将该算法从解的质量和多样性方面与传统蚁群算法、免疫算法及已有的改进算法进行了比较,结果表明:本文提出的算法不但明显提高了两个传统算法的性能,而且为解决其他组合优化问题提供了一个新的思路。 In order to overcome the shortcomings of the basic ant colony algorithm, such as slow convergence speed, precocity and stagnation, this paper proposes a hybrid ant colony algorithm based on the superior peptide and immune memory (SPIM-ACA) by using the mechanism of immune memory and the superior peptide selection and implantation. SPIM-ACA adds the interior and exterior memory library to the ant colony mode, takes the solutions in the memory library as antibodies and the problem as antigen, and undergoes the construction of solution and the updating of pheromone concentration by using the above mechanism. The results of experiment for solving TSP (traveling salesman problem) indicate that the proposed algorithm is superior to some standard algorithms, such as the hasic ant colony algorithm, the immune algorithm and so on, in the respects of the quality and the diversity of the performance.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期627-633,共7页 Journal of East China University of Science and Technology
基金 国家"973"项目(2009CB320603) 国家自然科学基金面上项目(60804029) 上海市科技攻关项目(08DZ1123100) 长江学者和创新团队发展计划(IRT0721) 高等学校学科创新引智计划(B08021) 上海市重点学科建设项目(B504)
关键词 优势肽 免疫算法 蚁群算法 旅行商问题(TSP) superior peptide immune algorithm ant colony algorithm traveling saleman problem (TSP)
  • 相关文献

参考文献12

  • 1Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the traveling salesman problem [J]. IEEE Transaction on Evolutionary Computation, 1997, 1(1) : 53-66.
  • 2Dorigo M, Maniezzo V, Colomi A. The ant system: Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man &Cybernetics B,1996,26(2):29-41.
  • 3MarcoDorigo.蚁群优化[M].北京:清华大学出版社,2006:64-114.
  • 4Gambardella L M, Dorigo M. Solving sysmmetric and asymmetric TSPS by ant colonies [J]. Proceedings of IEEE International Conference on Evolutionary Computation, 1996, 34 (5) :622-627.
  • 5Dorigo M, Gambardella L M. Ant colonies for the traveling salesman problem[J]. Bio Systems, 1997,43(2) :73-81.
  • 6Dorigo M, Stutzle T. The ant colony optimization metaheuristic: Algorithms, applications and advances ED~. Brussels, Belgium: University Libre de Bruxelles, 2000.
  • 7曾毅.一种免疫算法的改进[J].华东交通大学学报,2007,24(1):123-128. 被引量:7
  • 8周泉,章兢.基于克隆选择原理的免疫算法[J].计算机工程与应用,2005,41(21):61-63. 被引量:9
  • 9胡纯德,祝延军,高随祥.基于人工免疫算法和蚁群算法求解旅行商问题[J].计算机工程与应用,2004,40(34):60-63. 被引量:13
  • 10Adnan Acan. An external partial permutation memory for ant colony optimization[C]// Lecture Notes in Computer Science. Berlin Heidelberg: Springer Verlag, 2005 : 1-11.

二级参考文献27

  • 1玄光男 程润伟.遗传算法与工程设计[M].北京:科学出版社,2000..
  • 2Myung Y,Lee C,Tcha D.On Generalized Minimum Spanning Tree Problem[J].Networks, 1995; 26: 231~241
  • 3Cui X,Li M ,Fang T.Study of population diversity of multiobjective evolutionary algorithm based on immune and entropy principles[C].In:Proceedings of the IEEE Conference on Evolutionary Computation,IEEE Computer Society,2001:1316~1321
  • 4Leandro N De Castro,Fernando J Von Zuben.Learning and Optimization Using the Clonal Selection Principle[J].IEEE Transactions on Evolutionary Computation,2002;6(3):239~251
  • 5Burnet F M.The Clonal Selection Theory of Acquired Immunity[M].Cambridge University Press,1959
  • 6Dorigo M,Bonabeau E,Theraulaz G.Ant algorithm and stigmery[J]. Future Generation Computer Systems,2000;16(8):851~871
  • 7Tsai CF,Tsai CW.A new approach for solving large travelingsalesman problem using evolution ant rules[C].In :Proc of the 2002 Int,1Joint Conf on Neural Networks ,IJCNN 2002 Honolulu :IEEE Press,Vol 2,2002:1540~1545
  • 8Parpinelli RS,Lopes HS,Freitas AA.Data mining with an ant colony optimization algorithm[J].IEEE Trans on Evolutionary Computation,2002;6(4) :321~328
  • 9Drik Slama,[美]Jason Garbis,[澳]Perry Russell.CORBA企业解决方案[M].北京:机械工业出版社,2001
  • 10de CASTROLN,Von ZUBEN F J.learning and optimization using the clonal selection principle[J].IEEE trans on Evolutionary computation,special Issue on Artificial Immune systems,2002.6.(3):239-251.

共引文献26

同被引文献15

  • 1胡小兵,黄席樾,张著洪.一种新的自适应蚁群算法及其应用[J].计算机仿真,2004,21(6):108-111. 被引量:19
  • 2胡纯德,祝延军,高随祥.基于人工免疫算法和蚁群算法求解旅行商问题[J].计算机工程与应用,2004,40(34):60-63. 被引量:13
  • 3宋晓江,卢俊宇,隋明磊.基于免疫蚁群算法的Job-shop调度问题[J].计算机应用,2007,27(5):1183-1186. 被引量:10
  • 4HUNT J E,COOKE D E.Learning using an artificial immune system[J].Journal of Network Computer Applications,1996,19(2):189-212.
  • 5DORIGO M,GAMBARDELLA L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Trans on Evolutionary Computation,1997,1(1):53-66.
  • 6DORIGO M,MANIEZZO V,COLOMI A.The ant system:optimization by a colony of cooperating agents[J].IEEE Trans on Systems,Man,and Cybernetics:Part B,1996,26(1):29-41.
  • 7DORIGO M,STUTZLE T.Ant colony optimization[M].[S.l.]:The MIT Press,2004.
  • 8ZHOU Ai-min,KANG Li-shan,YAN Zhen-yu.Solving dynamic TSP with evolutionary approach in real-time[C]//Proc of Congress on Evolutionary Computation.2003:951-957.
  • 9BARAGLIA R,HIDALGO J I,PEREGO R.A hybrid heuristic for the traveling salesman problem[J].IEEE Trans on Evolutionary Computation,2001,5(6):613-622.
  • 10J Kim,P J Bentley . Towards an artificial immune system for network intrusion detection:An investigation of Clonal Selection [C]. In Proceedings of the 2002 Congress on Evolutionary Computation,Honolulu,USA, 2002 : 1015-1020.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部