期刊文献+

基于图像处理的铁路沿线视频监控算法设计

Arithmetic Design of Railway Monitoring on Video along Line Based on Image Processing
下载PDF
导出
摘要 随着中国火车的不断提速,为了保证铁路沿线人民的生命财产安全,提出一种基于视频图像处理的方法实现对于行人穿越铁路线的监控。首先,从动态场景中提取出静态铁路沿线的状态即背景提取;然后对视场中的危险区域进行划定;其次,当监控区域存在危险情况时系统能够对当前图像实时保存;最后,对保存到的图像进行目标识别。视频处理结果为系统可以自动的检测到穿越铁路线的行人并以图片的方式保存当时的现场信息。实验结果表明了这一方法的有效性,整个算法设计具有一定的可行性和参考价值。创新性在于通过图像处理的方法实现了对行人穿越铁路线的监控。 With the continuous enhanced velocity of Chinese train, for assuring the security of people's life estate on the railway,A method based on video image processing that realizes monitoring on foot passenger for traversing the railroad is introduced. Firstly,the state of static railway is picked - up from dynamic scene namely background extraction. Then, the region in hazard is demarcated in field of view. Thirdly, when the monitoring region is in dangerous case, system can conserve present image in realtime. Finally, system may achieve object identification for the conserved images. The video processing results are that this system could detect passerby automatically who is going through the railway and could conserve present field information by the picture. The validity of this method is proved by experimental results, the whole arithmetic design is provided with certain feasibility, it has definite reference values. It can supervise people's behavior of traversing railway by right of image processing.
出处 《现代电子技术》 2009年第17期162-164,共3页 Modern Electronics Technique
关键词 视频 监控 背景 目标识别 video monitoring background object identification
  • 相关文献

参考文献7

二级参考文献13

  • 1卢秋波.视频监控技术简介与发展趋势[J].安防科技,2007(5):21-23. 被引量:25
  • 2刘永信,魏平,侯朝桢.视频图像中运动目标检测的快速方法[J].仪器仪表学报,2002,23(z3):163-166. 被引量:21
  • 3袁基炜,史忠科.一种快速运动目标的背景提取算法[J].计算机应用研究,2004,21(8):128-129. 被引量:15
  • 4[1]Horn BK.Schunk BG.Determining optical flow.Artificial Intelligence,1981,17(1-3):185-203.
  • 5[2]Smith SM,Brady JM.ASSET-2:Real-Time motion segmentation and shape tracking.IEEE Trans.on PAMI,1995,17(8):814-820.
  • 6[3]Nerl A,Colonnese S,Russo G,Talone P.Automatic moving object and background separation.Signal Processing,1998,66(2):219-232.
  • 7[4]Meier T,Ngan KN.Automatic segmentation of moving objects for video object plane generation.IEEE Trans.on Circuits and Systems for Video Technology,1998,8(5):525-538.
  • 8[5]Eidder C,Munkelt O,Kirchner H.Adaptive background estimation and foreground detection using Kalman-filter.In:Proc.of the Int'I Conf.on Recent Advances in Mechatronics,ICRAM'95.UNESCO Chair on Mechatronics.1995.193-199.
  • 9[6]Friedman N,Russell S.Image segmentation in video sequences:A probabilistic approach.In:Proc.of the 13th Conf.on Uncertainty in Artificial Intelligence(UAI).San Francisco,1997.
  • 10[7]Stauffer C,Grimson WEL.Adaptive background mixture models for real-time tracking.In:Proc.of the IEEE Computer Society Conf.on Computer Vision and Pattern Recognition.Vo12.1999.246-252.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部