期刊文献+

自主移动机器人的自定位问题研究 被引量:2

Research on the Self-Localization of Autonomous Mobile Robot
下载PDF
导出
摘要 为解决仅仅利用视觉系统或者声纳系统得到的信息进行机器人自定位时存在较大的误差的问题,提出了一种极坐标系下进行自定位的方法.在极坐标系下,通过简单的几何算法获得视觉距离和角度、码盘距离和角度及声纳距离和角度,然后运用模糊数学的方法再对其信息融合,即将机器人视觉信息,驱动码盘信息和声纳信息等进行有效的融合,得到了理想的距离和角度信息,从而提高机器人的自定位精度.实验结果表明:在4 m范围内,其定位误差低于1.5%.该研究为多机器人定位提供了参考依据. To solve the problem that using the information of the robot vision or sonar system can not give good self-localization result, a new self-localization method for autonomous mobile robot (AMR) is proposed under polar coordinates. In this way, the distances and the angles of vision, driving motors and the sonar respectively can be derived from the simple geometrical algorithm, then, using the method of fuzzy mathematics to fuse the information. Thus the ideal distance and the angle information can be obtained to improve the self-localization accuracy of AMR. Experimental results show that the localization error is lower than 1.5% in the range of 4 m, and that the method provides a reference for the self-localization of multiple robots.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2009年第3期233-237,共5页 Journal of North University of China(Natural Science Edition)
基金 山西省留学回国人员科研基金资助项目
关键词 机器人自定位 信息融合 极坐标系 声纳 视觉信息处理 robot self-localization information fusion polar coordinates sonar information processing of vision
  • 相关文献

参考文献6

  • 1刘俊承,原魁,周庆瑞,彭一准.基于路标的机器人自定位方法[J].科学技术与工程,2005,5(17). 被引量:6
  • 2焦国太,李庆,冯永和,王锋.机器人位姿误差的综合补偿[J].华北工学院学报,2003,24(2):104-107. 被引量:18
  • 3Leonard J J, Durrant-Whyte H F. Mobile robot localization by tracking geometric beacons[J]. IEEE Transactions on Robotics and Automation,1991,7(3) : 376-382.
  • 4Betke M, Gurvits L. Mobile robot localization using landmarks[J]. IEEE Transactions on Robotics and Automation, 1997, 13(2):251-263.
  • 5Se S, Lowe D, Little J. Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks[J]. International Journal of Robotics Research, 2002, 21(8): 735-758.
  • 6诸静.模糊控制原理与应用[M].北京:机械工业出版社,1999..

二级参考文献11

  • 1焦国太,余跃庆,梁浩.机器人位姿误差的结构矩阵分析方法[J].应用基础与工程科学学报,2001,9(2):259-265. 被引量:15
  • 2[1]Armingol J M, Moreno L, de la Escalera A, Salichs M A. Landmark perception planning for mobile robot localization. Proceed ings of IEEE International Conference on Robotics and Automation, IEEE Computer Society, Leuven, Belgium, 1998; 4:3425-3430
  • 3[2]Kang Hyun-Deok, Jo Kang-Hyun. Self-localization of mobile robot using Omni-direcional vision. Proceedings of The 7th KoreaRussia International Symposium on Science and Technology,2003;2(28): 86-91
  • 4[3]Durrant-Whyte H F. Where am I? A tutorial on mobile vehicle localization. Industrial Robot, 1994;21(2): 11~16
  • 5[4]Shimshoni I. On mobile robot localization from landmark Bearings. IEEE Transactions on Robotics and Automation, 2002; 18(6): 971~976
  • 6[5]Fox D. Kld-sampling: adaptive particle filters and mobile robot localization. Proceedings of the 2003 IEEE International Conference on Robotics and Automation(ICRA 2003), Taipei, Taiwan,2003; 2:2836-2841
  • 7[6]LaViola Jr, Joseph J. A comparison of unscented and extendedKalman filtering for estimating quaternion motion. Proceedings of the 2003 American Control Conference, 2003; 3: 2435-2440
  • 8[7]Menegatti E, Zoccarato M, Pagello E, Ishiguro H. Image-based Monte-Carlo localization without a map. Advances in Artificial Intelligence Proc of 8th Congress of the Italian Association for Artificial Intelligence, Pisa: Springer, 2003: 423-435
  • 9周正干,李然,贠超,宋量量,刘晓平.实验模态技术在机器人动态特性分析中的应用[J].华北工学院学报,2000,21(4):290-295. 被引量:8
  • 10焦国太,阿.德.依科拉夫,余跃庆.工业机器人位姿误差的计算[J].机械科学与技术,2002,21(1):35-36. 被引量:17

共引文献68

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部