期刊文献+

物体形状与黄金率(英文)

Shapes of Objects and the Golden Ratio
下载PDF
导出
摘要 文献[Kanem]对第一手(初等)数学资料进行了诠释,但在现实生活中,五边形形状普遍存在。通过对巨大建筑物如埃及胡夫大金字塔(法老胡夫)中是否使用了黄金率的验证,旨在消除误解,给予有兴趣的业余爱好者提供自我思考其真实与否的一些材料,如果不是真实的,为什么不是真实的。基于同样的原则,关于Fibonacci数,还存在一些更为复杂的研究课题,如黄金率扩展等需要研究。文中部分材料来自Walser,Thomson等,但已被资深专家再加工。 This is a continuation of the researches that we started in [Kanem], where we had rendered visible, appealing to the minimum raw material of (elementary) mathematics, why the pentagonal form is prevailing in living organisms,and verified whether the golden ratio had been used in colossal constructions such as the great pyramid of Cheops (the pharao Khufu) in Egypt. The objective was to debunk the wrong speculations on one hand, and to give interested amateurs some material for self-thinking whether they are really true or not, and if not, why they not, on the other. This principle being the same, we are going to provide some more advanced topics on Fibonacei i numbers, the golden ratio expansion, etc., which may be pursued by aspirant students who aresaiming at degrees. Part of material is taken from Walser, Thomson etc. but is cooked by mastery hands. 2000 Mathematics Subject Classification: 11F66, 11M26, 11M41.
出处 《商洛学院学报》 2009年第4期18-27,共10页 Journal of Shangluo University
基金 supported in part by Grant in-aid for Scientific Research No.17540050
  • 相关文献

参考文献18

  • 1Mituolnom.TheBeautifulWorldofArehiteeture.TheKashima Shup-pankai,1981.
  • 2[Kanek] ShiroKaneko,TheDaywhenAtlantisperished, TheAsahi Co,1993.
  • 3[Kanem] Kanemitsuetd S. Thegolderratioandfivefoldsymmetry. Re-searchReportsoflntegratedSubj ectsotKumamotoUniversity.2003,6:17-29.
  • 4金光滋.关于Chebyshev多项式及其应用[J].商洛学院学报,2008,22(5):1-17. 被引量:3
  • 5[Kap1] Kappraff J. The relationship between mathematics and mysticismof the golden mean through history.Singapore: World Scientific,1991:33-65 in [Har].
  • 6[Kap2] KappratK Beyond MeasureSingapore: World Scientific, 2002:600.
  • 7[L] Lawlor R. Sacred Geometry:. Philosophy and Practice.London: Thames andHudson,1982.
  • 8[Li] Livio M. The Golden Ratio. London:REVIEW, 2002.
  • 9[M1] Koji Miyazaki. Plato and Five-storied Pagodas. Jinbunshoin,1987:130-131.
  • 10[M2] Koji Miyazaki.Hargittai, L Fivefold Symmetry. Singapore: World Scientific.,1992:361-393.

二级参考文献9

  • 1[1]Freud G.Orthogonal Polynomials,Pergamon Press,Oxford-New york-Toronto Sydney-Braunschweig,1966.
  • 2[2]Romanoff N P.Hilbert space and number theory 1,1946(10):3-34.
  • 3[3]Erd'elyi A,Magnus W,Oberhettinger F,et aLHigher tnmscendantal functions lI,McGraw-Hill,New York-Tomto-Londen,1953.
  • 4[4]Dodd F W.Number theory in the quadratic field with golden section unit.Polygonal PubLI-Iouse,Washington,N J,1983.
  • 5[5]Ahlfors L V.Complex Analysis:3rd ed.McGraw-Hill,New York-Tomto-London,1979:71.
  • 6[6]S Kunemitsu,Tsukada H.Vistas of special functions,World Scientific,Singapore-London-New York,2007:147.
  • 7[7]Romanoff N P.Hilbert space and number theory Ⅱ,1951(15):131-152.
  • 8[8]Yoshido M.How to understand molocular orbitals?:2nd ed,Tokyo Kagaku Dojin,1979.
  • 9[9]Davis P J.Circulant matriccs,Wiley-Interscicnce,New York-Chichester-Brisbane-Toronto,1923.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部