期刊文献+

边界元法计算切口多重应力奇性指数 被引量:2

Calculation of multiple stress singularity exponents of notches by boundary element method
下载PDF
导出
摘要 提出采用边界元法直接计算V形切口的多重应力奇性指数。首先在切口尖端挖出一微小扇形域,在该域边界列常规边界积分方程,后将扇形域内的位移场和应力场表示成关于切口尖端距离ρ的渐近级数展开式,回代入切口边界积分方程,离散后得到关于切口奇性指数的代数特征方程,从而求解获得V形切口的应力奇性指数。该法避免了常规边界元法和有限元法在切口尖端附近布置细密单元的缺陷,并可同时求得多阶应力奇性指数。 A new technique about the calculation of stress singularity exponents of V-notches with boundary element method is proposed. Based on the theory of linear elasticity, the asymptotic displacement and stress field in the V-notch tip region are expressed as a series expansion with respect to the radial coordinate from the tip. The series expansion of the asymptotic field is then substituted into the boundary integral equation of the V-notched structure. After the discretization, the boundary integral equation is transformed to the eigen equation with the stress singularity orders. By solving the algebraic eigen equation, the eigenvalues which are the singularity exponents can be obtained. Hence, the use of very fine elements near the V-notch tip in the conventional boundary element method is unnecessary in present new method. The multiple singularity exponents of V-notchs can be obtained simultaneously in the present method.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2009年第4期539-543,共5页 Chinese Journal of Computational Mechanics
基金 教育部博士点基金(20050359009) 合肥工业大学科学研究发展基金(080802F GDBJ2008-022)资助项目
关键词 V形切口 应力奇性指数 边界元法 线弹性 V-notch stress singularity exponent boundary element method linear elasticity
  • 相关文献

参考文献8

  • 1KONDO T, KOBAYASHI M, SEKINE H. Strain gage method for determining stress intensities of sharp-notched strips [J]. Experimental Mechanics, 2001,41(1) : 1-7.
  • 2MUNZ D, YANG Y Y. Stresses near the edge of bonded dissimilar materials described by two stress intensity factors[J]. International Journal of Fracture, 1993,60(2):169-177.
  • 3WILLIAMS M L. Stress singularities resulting from various boundary conditions in angular corners of plates in extension[J].Journal of Applied Mechanics, 1952,19(4) :526-528.
  • 4GU L, BELYTSCHKO T. A numerical study of stress singularities in a two-materical wedge[J]. International Journal of Solids Structures, 1994,31 865-889.
  • 5XU Jin-quan, LIU Yi-hua, WANG Xiao-gui. Numerical method for the determination of multiple stress singularities and related stress intensity coefficients[J]. Engineering Fracture Mechanics, 1999, 63(6) :775-790.
  • 6CHEN M C, SZE K Y. A novel finite element analysis of bimaterial wedge problems [J]. Engineering Fracture Mechanics, 2001,68:1463-1476.
  • 7YOSIBASH Z, SZABo B A. A note on numerically computed eigenfunctions and generalized stress intensity factors associated with singular points[J].Engineering Fracture Mechanics, 1996 ,54(4):593-595.
  • 8傅向荣,龙驭球.解析试函数法分析平面切口问题[J].工程力学,2003,20(4):33-38. 被引量:17

二级参考文献8

共引文献16

同被引文献28

  • 1Jaswon M A, Symm G T. Integral Equation Methods in Potential Theory and Elastostasties Academic Press[R]. New York, 1977.
  • 2Cruse T A. A direct formulation and numerical solution of the general transient elastodynamie problem [J]. J Math Anal and App1,1968(22) :341-355.
  • 3Chen L H,Schweikert D G. Sound radiation from an arbitrary body[J]. J Acous Soc Am, 1963 (35) : 1626- 1632.
  • 4Chertock G. Sound radiation from vibration surface [J]. J Acous Soc Am,1964(36) :1305-1313.
  • 5Schenck H A. Improved integral formulation for acoustic radiation problems[J]. J Acous Soc Am, 1968 (44) :41-58.
  • 6Burton A J, Miller G F. The Application of integral equation methods to the numerical solution of some exterior boundary-value problems[A]. Proceedings of the Royal Society of London[C]. 1971 (323): 201- 220.
  • 7Steffen M, Bodo N. Computational Acoustics of Noise Propagation in Fluids-Finite and Boundary Element methods [ M]. Heidelberg Publication, Berlin,2008.
  • 8Visser R. A boundary element approach to acoustic radiation and source identification[D]. University of Twente, 2004.
  • 9Langdon S, Chandler W. Boundary Element Methods for Acoustics. www. reading, ae. uk/- sms03sne, 2007. (Accessed 10 March 2008).
  • 10Kolm P,Rokhlin V. Numerical quadratures for singular and hyper-singular integrals [J].Computers and Mathematics with Applications, 2001 (41) : 327-352.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部