摘要
在d维空间n个数据点中,k近邻搜索用于查找给定查询点的k个最近邻居.针对k最近邻搜索算法存在的问题,提出了一种基于P2P的k最近邻自适应搜索算法PKA.探讨了度量空间、相似性查询和GHT*规则,定义了高维数据的相似度函数ESF(X,Y),论述了GHT*中插入算法及范围查找算法和搜索算法.在此基础上,具体给出了PKA算法的实现方法,并验证了其正确性.
Given n data points in d-dimensional space, k nearest neighbors searching involves determining k nearest of these data points to a given query point. An adaptive distributed k-nearest neighbor search algorithm based on P2P called PKA in high dimensions is proposed to solve the shortcomings of KNNs. Metric Space, Similarity Queries and Principles of GHT* are discussed. Similarity measure function ESF(X, Y) is given. Insert, Range find and Search Algorithms in GHT* are discussed. The detailed PKA algorithm is given and discussed with experiment.
出处
《微电子学与计算机》
CSCD
北大核心
2009年第9期61-63,共3页
Microelectronics & Computer
基金
国家社会科学基金项目(09BJY106)