摘要
通过定量描述网络的鲁棒性、脆弱性等性能参数,建立了网络拓扑的多目标优化模型,并使用遗传算法求解了该模型.在模型求解过程中为尽量降低对内存和处理器的需求,优化了网络拓扑的编码方式,并提出一个高效的基于种群个体的连通性判断方法.实验结果表明,所建立的模型和算法能够正确地解决拓扑优化问题.
By quantitatively describing network performance ingredients such as robust and vulnerability, this paper sets up a multi-objective model to find the optimal network topology. To reduce the requirement for memory and process, this paper optimizes the coding for topology, and designs an efficient algorithm to determine the connectivity of network. Experiments shows the model and the algorithm can solve the problem of optimizing the network topology.
出处
《微电子学与计算机》
CSCD
北大核心
2009年第9期64-66,共3页
Microelectronics & Computer
关键词
遗传算法
网络最优拓扑
多目标规划
genetic algorithm
optimal network topology
multi-objective planning