期刊文献+

基于改进ANMM及Trace Ratio的人脸识别算法

Face Recognition Algorithm Based on Modified Average Neighborhood Margin Maximizing and Trace Ratio
下载PDF
导出
摘要 针对传统ANMM算法计算率低的问题,提出一种基于改进ANMM及Trace Ratio的人脸识别算法.在近邻保持投影的基础上,算法减少了同类数据间由于线性投影而带来的重构误差,同时,保留了类内相似度图的拉普拉斯矩阵的完整性.另一方面,通过构造一个与类内相似度图对应的类外代价图,算法还可以最大化两者间的边界. In order to resolve the low rate of calculation of traditional ANMM algorithm, a ANMM based on improved and Trace Ratio of face recognition algorithms. Ways to keep the neighbors at the basis of projection, the algorithm reduced because of similar data between the linear projection of the reconstruction error arising at the same time, retained the category similarity graph Laplacian matrix integrity. On the other hand, by constructing a category of "similarity" graph corresponding categories of the "price" chart, the algorithm can also maximize the border between the two.
出处 《微电子学与计算机》 CSCD 北大核心 2009年第9期150-152,共3页 Microelectronics & Computer
关键词 人脸识别 ANMM算法 TRACE Ratio降维算法 face recognition ANMM Trace Ratio
  • 相关文献

参考文献8

  • 1Zhao W, Chellappa R, Philips P J,et al. Face recognition: a literature survey[ C ]//ACM computring Surveys. California, United States: ACM Press, 2003, 35(4): 399- 458.
  • 2Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of face: a survey[J], the IEEE, 1995, 83 (12) :705 - 740.
  • 3Li S Z, Peng X, Hou X, et al. Multiview face pose estimation based on supervised ISA learning[C]//Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition. Ottawa, Canada. IEEE Press, 2002, 8(12):107- 121.
  • 4Li Y, Gong S, Liddell H. Modding faces dynamically across views and over time [ C] // Proceedings of IEEE ICCV01. Vancouver, Canada: IEEE Press, 2001, 25(12): 85 - 88,.
  • 5Okada K, Malsburg C vonder. Poseinvariant face recognition with parametric linear subspaces[C]//Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition. Hawaii, United States: IEEE Press, 2002, 22(6) : 71 - 76.
  • 6Turk M, Pantland A. Eigenfaces for recogniton[J]. Jounal of Cognitive Neuroscience, 1991, 3(1 ) : 71 - 86.
  • 7Moon H, Phillips P J. Analysis of PCA based face recognition algorithms [C]// Empirical Evaluation Techniques in Computer Vision. Chicago, United States: IEEE Computer Society Press, 1998, 21(6) :57-71.
  • 8Bruce A Draper, Wendy S Yambor, Beveridge J Ross. Analyzing pc.abased face recognition algorithms: Eigenvector selection and distance measures[ C]//Second Workshop on Empirical Evaluation in Computer Vision. Dublin, Ireland: IEEE Press, 2000, 7(16) : 164- 165.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部