期刊文献+

基于微观偏析统一模型及Thermo-Calc的三元合金凝固路径耦合计算 被引量:5

THERMO-CALC LINKED COMPUTATIONS OF SOLIDIFICATION PATHS OF TERNARY ALLOYS USING AN EXTENDED UNIFIED MICROSEGREGATION MODEL
下载PDF
导出
摘要 将合金凝固微观偏析统一模型推广到三元合金凝固微观偏析的预测,并提出了能够计算三元匀晶与共晶合金凝固路径的数值计算方法.实现了在源代码层次上与热力学计算软件Thermo-Calc及其数据库的耦合,以获取多元合金凝固路径计算所需的凝固热力学数据.通过Fe-40V-40Cr,Al-4.5Cu 1.0Si.Al 10Cu 2.5Mg和Al-1.49Si-0.64Mg(质量分数,%)等多元/多相合金在不同冷速下凝固路径的实例计算,以及与相应的凝固组织定量金相实验结果对比,验证了本文多元/多相凝固模型和算法的正确性. A model for predicting the microsegregation of ternary alloys was developed via extending a previously proposed unified microsegregation model for binary alloys. The present multicomponent/multiphase model retains the advanced features of the previous binary microsegregation model, in which the unified microscale parameter Ф takes a general function form to account for more possible influential factors, including the partition coefficient, solid fraction, solid diffusion coefficient, dendrite geometrical morphologies and solidification rate, etc. The algorithms for calculating the solidification paths of ternary isomorphous and eutectic alloys were proposed, which closely couples with a commercial software package/database of Thermo-Calc via its TQ6-interface in order to directly access to thermodynamic data needed in the multicomponent/multiphase solidification path computations. In the solidification of primary phase and three phases eutectic, solid fraction fs was selected to be a control variable when solving the equations of the microsegregation models, while in the solidification of two phases eutectic, temperature was selected to be a control variable as the relationship between the concentrations of solutes B and C was unknown. In each calculation iterative step, the names and number of the equilibrium phases were obtained from Thermo-Calc, and then saved and compared with the calculation results of the previous step. As the names and number of the equilibrium phases in each solidification stage of ternary eutectic alloys are different, the three solidification types were determined by comparing with the results in the computation process. The availability and reliability of the proposed multicomponent/multiphase model and algorithms were demonstrated by sample computations for the solidification paths of Fe-40V-40Cr, A1-4.5Cu-ISi, AI-10Cu 2.5Mg and Al-l.49Si-0.64Mg (mass fraction, %) alloys under different solidification/cooling rates, and by comparisons with the experimental results of quantitative measurements of corresponding solidification microstructures.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2009年第8期956-963,共8页 Acta Metallurgica Sinica
基金 中南大学粉末冶金国家重点实验室开放课题资助项目2008112042~~
关键词 多元/多相凝固路径 微观偏析 THERMO Calc耦合计算 多元铝合金 multicomponent/multiphase solidification path, microsegregation, Thermo-Calccoupled calculation, multicomponent A1 alloys
  • 相关文献

参考文献20

  • 1Fujii T, Poirier D R, Flemings M C. Metall Trans, 1979; 10B: 331.
  • 2Mehrabian R, Flemings M C. Metall Trans, 1970; 1:455.
  • 3Cornelissen M C M. Ironmaking Steelmaking, 1986; 13(4): 204.
  • 4Roosz A, Exner H E. Acta Matall Mater, 1990; 38:375.
  • 5Xie F Y, Kraft T, Zuo Y, Moon C H, Chang Y A. Acta Mater, 1999; 47:489.
  • 6Kraft T, Rettenmayr M, Exner H E. Modell Simul Mater Sci Eng, 1996; 4:161.
  • 7Zhao G W, Xu D M, Fu H Z. Int J Mater Res, 2008; 128: 680.
  • 8Vusanovic I, Sarler B, Krane M J M. Mater Sci Eng, 2005; A413-414:217.
  • 9die W Q, Zhang R J, Zhi H. Mater Sci Eng, 2005; A413 -414:497.
  • 10Laroucbe D. Calphad, 2007; 31:490.

二级参考文献13

  • 1FLEMINGS M C. Solidification Processing [ M ]. New York : McGraw - Hill Book Co, 1974.
  • 2BATTLE T P. Mathematical modeling of solute segregation in solidification materials [ J]. Int Materials Reviews, 1992, 37(6) : 249 -270.
  • 3BRODY H D, FLEMINGS M C. Solute redistribution in dendritic solidification [J]. Trans TMS- AIME, 1966,236 : 615 - 624.
  • 4CLYNE T W, KURZ W. Solute redistribution during solidification with rapid solid state diffusion [ J ]. Metall Trans A, 1981, 12A: 965-971.
  • 5OHNAKA I. Mathematical analysis of solute redistribution during solidification [ J ]. Trans ISIJ, 1986, 26 :1045 - 1051.
  • 6XU D M. A unified micro-scale parameter approach to solidification transport phenomena-based macrosegregation modeling for dendritic solidification: part I. mixture average based analysis [ J ]. Metall Mater Trans B,2001, 32B: 1129-1141.
  • 7XU D M. A unified micro-scale parameter approach to solidification transport process-based macrosegregation modeling for dendritic solidification: part II. numerical example computations [ J ]. Metall Mater Trans B,2002, 33B: 451 -463.
  • 8NASTAC L, STEFANESCU D M. An analytical model for solute redistribution during solidification of planar,columnar, or equiaxed morphology [ J]. Metall Trans A,1993, 24A: 2107-2118.
  • 9KOBAYASHI S. Solute redistribution during solidification with diffusion in solid phase: a theoretical analysis[J]. J of Crystal Growth, 1988, 88:87 -96.
  • 10KOBAYASHI S. Mathematical analysis of solute redistribution during solidification based on a columnar dendrite model [J]. Trans ISIJ, 1988, 28:728 -735.

共引文献4

同被引文献23

  • 1冯科,韩志伟,王勇,毛敬华.基于枝晶粗化和反向扩散的二元合金微观偏析数学模型[J].铸造,2006,55(7):699-703. 被引量:8
  • 2MEHRABIAN R, FLEMINGS M C. Macrosegregation in ternary alloys[J]. Metallurgical and Materials Transactions B, 1970, 1(2): 455-464.
  • 3FERREIRA I L, VOLLER V R, NESTLER B, et al. Two- dimensional numerical model for the analysis of macrosegregation during solidification [J]. Computational Materials Science, 2009, 46(2): 358 -366.
  • 4YAN X, CHEN S, XIE F, et al. Computational and experimental investigation of microsegregation in an Al-rich Ai Cu-Mg-Si quaternary alloy[J]. Acta Materialia, 2002, 50: 2199- 2207.
  • 5DU Q, ESKIN D G, KATGERMAN L. Modeling macrosegregation during direct-chill casting of multicomponent aluminum alloys[J]. Metallurgical and Materials Transactions A, 2007, 38: 180-189.
  • 6DORE X, COMBEAU H, RAPPAZ M. Modelling of mierosegregation in ternary alloys: application to the solidification of AI-Mg-Si [J]. Acta Materialia, 2000, 48:3951-3962.
  • 7DU Q, ESKIN D G, KATGERMAN L. An efficient technique for describing a multi component open system solidification path[J]. Calphad Computer Coupling of Phase Diagrams Thermochemistry, 2008, 32: 478-484.
  • 8GUANGWEI Z, DAMING X, HENGZHI F. ThermoCalc based numerical computations for temperature, fraction of solid phase and composition couplings in alloy solidification [J]. International Journal of Materials Research, 2008, 99 (6) : 680- 688.
  • 9ZHAO Guang-wei, LI Xin-zhong; XLI Da ruing, et al, Numerical computations for temperature, fraction of solid phase and composition couplings in ternary alloy solidification with three different thermodynamics data-acquisition methods [J]. Calphad, 2012, 36: 155-162.
  • 10DU Y, LIU S H, ZHANG L J, et al. An overview on phase equilibria and thermodynamic modeling in multicomponent A1 alloys: focusing on the A1-Cu Fe-MgMn-Ni-Si Zn system [J]. Calphad-Computer Coupling of Phase Diagrams Thermochemistry, 2011, 35(3): 427- 445.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部