期刊文献+

负载型金属催化剂上合成气制甲醇反应体系的耐硫性能 被引量:2

Sulfur resistance of methanol synthesis from syngas over metal-supported catalysts
下载PDF
导出
摘要 研究了共沉淀法制备的系列金属负载型催化剂合成气制甲醇反应性能,重点考察了催化剂上合成甲醇反应体系的耐硫性能。结果表明,Cu/ZnO催化剂显示了较好的甲醇合成反应性能,但该反应在含硫气氛下迅速失活;Pd/CeO2催化剂体现了良好的甲醇合成反应性能和该反应体系的高耐硫性能。结合多种物理化学表征手段分析得出,Cu/ZnO催化剂在含硫气氛下因活性组分形成金属硫化物而失活;Pd/CeO2催化剂中的载体CeO2可优先与硫作用而保护金属活性组分,进而保持了Pd/CeO2反应体系的高抗硫性能。 Supported metal catalysts and its sulfur resistance was studied for methanol synthesis from syngas was prepared by co-precipitation method The experimental results show that Cu/ZnO exhibited the best methanol synthesis activity but deactivated quickly when sulfur-contaminated syngas was used. However, Pd/Ceo2 showed stable methanol synthesis activity in the sulfur-contaminated syngas. The characterization results indicate that the active components of Cu/Zno reacted with H2S in syngas and deactivated the methanol synthesis catalayst. Ceo2 as support of Pd/CeO2 could first react with H2S in syngas and protected the metal active components, and further kept the stable methanol synthesis activity in the sulfur-contaminated syngas.
出处 《燃料化学学报》 EI CAS CSCD 北大核心 2009年第4期480-484,共5页 Journal of Fuel Chemistry and Technology
基金 中国科学院大连化学物理研究所创新项目
关键词 合成气 甲醇 耐硫催化 负载金属催化剂 syngas methanol metal-supported catalysts sulfur-resistant catalysis
  • 相关文献

参考文献24

  • 1SHINADA O, YAMADA A, KOYAMA Y. The development of advanced energy technologies in Japan IGCC : A key technology for the 21st century[J].Energy Convers Manage, 2002, 43(9/12) : 1221-1233.
  • 2AKIMOTO K, TOMODA T, FUJII Y. Development of a mixed integer programming model for technology development strategy and its application to IGCC technologles[J]. Energy, 2005, 30(7) : 1176-1191.
  • 3MAHAJAN D, GOLAND A N. Integrating low-temperature methanol synthesis and CO2 sequestration technologies: Application to IGCC plants [J]. Catal Today, 2003, 84(1/2) : 71-81.
  • 4BERNARD J W, WILLIAM E I, HENRY W. Kinetic studies of catalyst poisoning during methanol synthesis at high pressures[ J]. Ind Eng Chem Prod Res Dev, 1980, 19(2) : 197-204.
  • 5JAHNEK F C. Effective use of resources: II Waste plastics gasification project-experience in PAX potterdam project [ J ]. Petrotech, 1999, 22 ( 11 ) : 943-949.
  • 6TWIGG M V, SPENCER M S. Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis [J]. Top Catal, 2003, 22(3/4) : 191-203.
  • 7KOIZUMI N, MIYAZAWA A, FURUKAWA T, YAMADA M. Selective synthesis of methanol from CO + H2 over Pd sulfide in the presence of H2S[J]. Chem Lett, 2001, 30(12): 1282-1283.
  • 8YAMADA M, KOIZUMI N, MIYAZAWA A, FURUKAWA T. Novel catalytic properties of Rh sulfide for the synthesis of methanol from CO + H2 in the presence of H2S[J]. Catal Lett, 2002, 78(1/4) : 195-199.
  • 9KOIZUMI N, MURAI K, TAMAYAMA S, OZAKI T, YAMADA M. Promoting effects of some metal additives on the methanol synthesis activity of sulfided Pd/SiO2 catalyst from syngas containing H2 S[ J]. Energy Fuels, 2003, 17 (4) : 829-835.
  • 10POUTSMA M L, ELEK L F, IBARBIA P A, RISCH A P, RABO J A. Selective formation of methanol from synthesis gas over palladium catalysts [J]. JCatal, 1978, 52(1): 157-168.

二级参考文献6

共引文献3

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部