期刊文献+

基于信噪比经验值的奇异值分解滤波门限确定 被引量:7

Decision of threshold for singular value decomposition filter based on SNR's empirical value
下载PDF
导出
摘要 针对奇异值分解滤波器(SVDF)现有的奇异值截断准则之不足,提出了一种基于信噪比经验值的SVDF滤波门限确定新方法。推导了门限值与信噪比之间的数学关系。实验结果证实了该滤波消噪算法的有效性和合理性。与现有方法相比,消噪效果得以明显改进;而且原理清晰,实现简单。 Aiming at shortcomings of the existing singular value trun.cation criterion of singular value decomposition fiher (SVDF), this paper put forward a new method to decide the threshold for SVDF, based on the empirical value of signal to noise ratio(SNR). It deduced the mathematical relation between the threshold and SNR. Finally, approved the rationality and validity of the promoted noise-elimination algorithm with SVDF by the experiment results. Compared to the existing methods, the effect of noise elimination is obviously improved, with clear principle and easy implement.
出处 《计算机应用研究》 CSCD 北大核心 2009年第9期3253-3255,共3页 Application Research of Computers
基金 "十一五"国防预研基金项目
关键词 奇异值分解滤波器 信噪比 滤波门限 噪声消除 singular value decomposition filter(SVDF) signal to noise ratio filtering threshold noise elimination
  • 相关文献

参考文献10

  • 1TUUPS D W, KURNARESAN R, KIRSTEINS I. Data adaptive signal estimation by singular value decomposition of a data matrix[ C]//Proc of IEEE. [S. l. ] :IEEE Press,1982:684-685.
  • 2张丽艳,殷福亮.一种改进的奇异值分解语音增强方法[J].电子与信息学报,2008,30(2):357-361. 被引量:11
  • 3BAE S N, UDOMHUNSAKUL S. Noise suppression using block based singular value decomposition filtering [ C ]//Proc of IEEE APCC2007. 2007:491-494.
  • 4RICE B. Using singular value decomposition to recover periodic wave- forms in noise and with residual carrier:SVD and signal[ C]//Proc of II. [ S. 1. ] : Elsevier Science Publishers,1991:419-428.
  • 5KONSTANTINIDES K, YAO K. Statistical analysis of effective singular values in matrix rank determination[J]. IEEE Ttans on Acoustics, Speech, and Signal Processing, 1988, 36(5): 757-763.
  • 6康春玉,章新华.一种基于奇异值分解的自适应降噪方法[J].声学技术,2008,27(3):455-458. 被引量:17
  • 7王太勇,王正英,胥永刚,李瑞欣.基于SVD降噪的经验模式分解及其工程应用[J].振动与冲击,2005,24(4):96-98. 被引量:39
  • 8胡谋法,董文娟,王书宏,陈曾平.奇异值分解带通滤波背景抑制和去噪[J].电子学报,2008,36(1):111-116. 被引量:39
  • 9BOX P E G, JENKINS M G, REINSEL C G. Time series analysis: forecasting and control[ M]. 3rd ed. [ S. l. ] :Pearson Education Asia Ltd, 2005.
  • 10GOLUB H G, VAN LOAN C F. Matrix computations[ M]. 3rd ed. [ S.l. ] :The Johns Hopkins University Press, 1996.

二级参考文献39

  • 1朱启兵,刘杰,李允公,闻邦椿.基于结构风险最小化原则的奇异值分解降噪研究[J].振动工程学报,2005,18(2):204-207. 被引量:19
  • 2胡红英,马孝江.基于局域波分解的信号降噪算法[J].农业机械学报,2006,37(1):118-120. 被引量:26
  • 3胡谋法,李超,韩建涛,王书宏,陈曾平.可见光图像背景起伏的平稳性和相关性分析[J].光电工程,2006,33(3):44-49. 被引量:4
  • 4冯大政,保铮,焦李成.用于奇异值分解的全并行神经网络[J].电子科学学刊,1997,19(1):17-23. 被引量:1
  • 5戈卢布 G H范洛恩 等.矩阵计算[M].北京:科学出版社,2001.603-626.
  • 6Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R.Soc. Lond, 1998, 454(A): 903-995.
  • 7Li Ruixin,Wang Dongfeng, Han Pu,et al. On the applications of SVD in fault diagnosis. Proceedings of the IEEE International Conference on Systems,Man and Cybernetics,2003,4:3763-3768.
  • 8J.H.威尔金森 著,石钟慈,邓健新 译.代数特征值问题[M].北京:科学出版社,2001.
  • 9Boll S F. Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1979, 27(2): 113-120.
  • 10Flanagan J L, Johaston J D, and Zatm T, et al.. Computer-steered microphone arrays for sound transduction in large rooms. Journal of Acoustical Society of America, 1985 78(5): 1508-1518.

共引文献97

同被引文献53

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部