期刊文献+

基于改进遗传算法的交叉口模糊控制研究 被引量:5

Study of fuzzy control for intersections based on improved genetic algorithm
下载PDF
导出
摘要 为了改善城市道路交叉口交通信号控制,降低交叉口车辆延误,提出了一种基于改进遗传算法优化的模糊控制方法。在优化模糊控制器的过程中,为避免出现"早熟"现象,采用改进的自适应遗传算法,在进化过程中动态调整种群中适应度值最大个体的交叉概率和变异概率,使种群进化不会处于一种近似停滞不前的状态。为了检验该控制方法的性能,以交叉口车辆平均延误作为性能评价指标,在相同交通条件下进行了仿真实验。结果表明,相对于普通模糊控制器,经过改进遗传算法优化的模糊控制器能有效减小交叉口车辆的平均延误,提高交叉口的通行能力。 In order to decreas vehicle delay in intersection, this paper presented an improved GA-based fuzzy control method for the traffic signal in urban intersections. To avoid prematurity problem, applied improved adaptive GA to optimizing the fuzzy controller. The crossing and mutation probability of individual that enjoyed the maximum fitness value were dynamically adjusted during the evolution of the population, which ensured that the evolution of the population will not suspend. To vali- date the performance of this control method, carried out simulation with vehicle average delay in the intersections being the performance index. The result indicates that the optimized fuzzy controller outperforms the traditional one in decreasing the vehicle average delay and increasing traffic capacity of the intersections.
出处 《计算机应用研究》 CSCD 北大核心 2009年第9期3330-3333,共4页 Application Research of Computers
基金 重庆市自然科学基金资助项目(CSTC 2008BB2324)
关键词 交叉口 交通信号 模糊控制 自适应遗传算法 平均延误 intersection traffic signals fuzzy control genetic algorithm average delay
  • 相关文献

参考文献12

  • 1陈丹,高孝洪,张本.城市道路交叉口交通信号控制系统的发展及现状[J].交通科技,2005,15(6):76-78. 被引量:9
  • 2HAWAS Y E. A fuzzy-based system for incident detection in urban street networks[ J]. Trans on Research Part C: Emerging Technologies, 2007,15(2) :69-95.
  • 3PAPPIS C P, MAMDANI E H. A fuzzy logic controller for a traffic junction[J]. IEEE Trans on Systems, Man, and Cybernetics, 1977 ,SMC-7(10) :707-717.
  • 4徐冬玲,方建安,邵世煌.交通系统的模糊控制及其神经网络实现[J].信息与控制,1992,21(2):74-79. 被引量:95
  • 5HSING-HAN L, PAU-LO H. Design and simulation of adaptive fuzzy control on the traffic network[ C ]//Pore of SICE-ICASE International Joint Conference. Korea: [ s. n. ] , 2006:4961-4966.
  • 6NAIR B M, CAI Jin-hai. A fuzzy logic controller for isolated signalized intersection with traffic abnormality considered [ C ]//Proc of IEEE Intelligent Vehicles Symposium. Turkey: IEEE press, 2007: 1229-1233.
  • 7ALCALA R, ALCALA-FDEZ J, HERRERA F, et al. Genetic learning of accurate and compact fuzzy rule based systems based on the 2- tuples linguistic representation [ J ]. International Journal of Approximate Reasoning, 2007,44( 1 ) :45-64.
  • 8CHEN S M, HUANG C M. A new approach to generate weighted fuzzy rules using genetic algorithms for estimating null values[ J]. Expert Systems with Applications, 2007,5 (3) :905- 917.
  • 9BEGUM M, MANN G K, GOSINE R G. Integrated fuzzy logic and genetic algorithmic approach for simultaneous localization and mapping of mobile robots [ J ]. Applied Soft Computing, 2008,8 ( 1 ) : 150- 165.
  • 10CUOMO P, DILASCIO L. A new fuzzy systems design and optimization approach using genetic algorithms [ C ]//Proc of Fuzzy Systems Conference. [S. l. ] : IEEE Press, 2007:1-6.

二级参考文献8

共引文献104

同被引文献35

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部