摘要
改进了二维直方图的构造方法,利用空间邻域信息使改进的二维直方图具有更丰富的噪声判断信息,并根据此信息将图像分为噪声子图和非噪声子图。采用均值漂移算法对图像进行聚类分割,并对均值漂移的高斯核函数进行了改造,使算法对噪声有更好的平滑作用,对非噪声区域有更准确的分割效果。实验结果表明,改进的算法对噪声污染的图像有更好的抗噪能力,分割也更加准确。
This paper improved the establishment of 2D histogram to contain more detailed information of noise estimation, according to which the image was divided into noise sub-image and non-noise sub-image. Then mean shift was applied to cluster and segment. The modified Gaussian kernel function could smooth noise better and cluster more accurately in non-noise subimage. The experimental results show that the improved algorithm has better performance of anti-noise and more accurate precision.
出处
《计算机应用研究》
CSCD
北大核心
2009年第9期3536-3538,共3页
Application Research of Computers
基金
国家自然科学基金资助项目(60475002)
航空科学基金资助项目(2008ZD56003)
关键词
二维直方图
均值漂移
子图
改造高斯核
2D histogram
mean shift
sub-image
modified Gaussian kernel