期刊文献+

中国地带性土壤有机质含量与酸碱度的关系 被引量:175

RELATIONSHIPS BETWEEN SOIL ORGANIC MATTER CONTENT(SOM) AND pH IN TOPSOIL OF ZONAL SOILS IN CHINA
下载PDF
导出
摘要 利用中国第二次土壤普查确定的886个典型地带性土种剖面资料,通过统计分析研究了全国及6个地理区域(华东、华南、西南、东北、华北和西北)地带性土壤表层有机质含量与pH的关系。结果表明,土壤表层有机质含量和pH在不同地理区域间有明显差异;土壤有机质含量有随pH升高而降低的趋势,二者间呈极显著的负相关关系(r=-0.332~-0.530,p<0.001),在控制温度、降雨和海拔条件下,二者间的偏相关关系也均达到1%的显著水平(r偏=-0.217~-0.322);指数方程(SOM=aebpH,a和b为常数)可以较好地描述土壤表层有机质含量与pH的关系,土壤pH变异可以分别解释有机质含量总变异的12.2%~22.9%。 Soil organic matter plays a key role in global carbon cycling and global climate changing. Relationships between organic matter (SOM) content and soil pH in topsoil of zonal soils of the whole country and six great geographical regions (i. e. Eastern, Southern, Northern, Northeastern, Northwestern and Southwestern China) were studied statistically based on the data of 886 soil profiles of zonal soil types defined during the second national soil survey of China. Results show that SOM content and soil pH varied significantly from one geographical region to another. There was obvious trend that SOM contents decreased with increasing soil pH, showing a significant negative correlation with soil pH (r = -0. 332~ -0. 530, p 〈 0. 001). Partial correlation between them, with controlled annual mean temperature, annual mean precipitation and altitude, was also significant at 0.01 level (rp = -0. 217 - -0. 322). An exponential equation (SOM = a e ^b pH, a and b were fit constants) can welt describe the relationship between SOM content and soil pH. The variance of soil pH is found to contribute 12.2%- 22.9% to the total variance of SOM content in the country and the six geographical regions.
出处 《土壤学报》 CAS CSCD 北大核心 2009年第5期851-860,共10页 Acta Pedologica Sinica
基金 中国科学院知识创新重大项目(KZCX1-SW-01-13) 国家基础研究重点发展规划项目(2002CB412500) 安徽省教育厅自然科学基金(2006kj211B) 安徽师范大学博士基金 专项研究基金(2005XZX20)资助
关键词 土壤有机质 土壤PH 地带性土壤 相关分析 中国 Soil organic matter Soil pH Zonal soil Correlation analysis China
  • 相关文献

参考文献33

  • 1Post W M, Emanuel W R, Zinke P J, Strangenberger, A. et al. Soil carbon pools and world life zones. Nature, 1982, 295: 156 - 159.
  • 2Eswaran H, Van Den Berg E, Reich P. Organic carbon in soils of the world. Soil Sci. Soc. Am. J. , 1993, 57:192 ~ 194.
  • 3Batjes N H. Carbon and nitrogen in the soils of the world. European Journal of Soil Science, 1996, 47:151 -163.
  • 4Amundson R. The carbon budget in soils. Annual Review of Earth & Planetary Sciences, 2001, 29:535 N 562.
  • 5Schimel D S. Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1995, 1 : 77 -91.
  • 6Houghton R A. Changes in the storage of terrestrial carbon since 1850. In: Lal R, Kimble J, Levine E, et al. eds. Soils and Global Change. Boca Raton, FL: CRC Lewis Publishers, 1995. 45 - 65.
  • 7Hedges J I, Oades J M. Comparative organic geochemistries of soils and marine sediments. Organic Geochemistry, 1997, 27: 319 -361.
  • 8Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 2000, 10 : 423 - 436.
  • 9Kirschbaum M U F. Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry, 2000, 48:21 -51.
  • 10Motavalli P P, Palm C A, Parton C A, et al. Soil pH and organic C dynamics in tropical forest soils: Evidence from laboratory and simulation studies. Soil Biology & Biochemistry, 1995, 27 : 1 589 -1 599.

二级参考文献13

共引文献511

同被引文献3117

引证文献175

二级引证文献1538

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部