期刊文献+

一种改进的基于流形对齐的协同过滤算法

An Improved Collaborative Filtering Algorithm Based on Manifold Alignments
原文传递
导出
摘要 基于流形对齐的协同过滤算法是通过用户间的相似性来计算重构矩阵,所以相似性计算的不准确往往会导致权值矩阵不准确,使得推荐质量下降.文中对基于流形对齐的协同过滤算法进行改进,采用数据集的拓扑结构矩阵和几何结构矩阵线性组合的方法来计算权值矩阵,有效去除相似性误差对推荐质量的影响.实验结果表明,改进后的算法与原算法相比有较好的推荐质量. Collaborative filtering by the learning manifold alignments provides a new way for cross system personalization. It uses similarity between users to compute reconstruction weights. However, inaccurate similarity often leads to inaccurate weights and poor recommendation quality. By combining the topology and geometry structures of data set to calculate weight matrix, an algorithm based on manifold alignments is proposed. The proposed improved collaborative filtering algorithm removes the effect of similarity error on recommendation quality effectively. The experimental result indicates that the improved algorithm has better recommendation quality than that of the original algorithm.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2009年第4期614-618,共5页 Pattern Recognition and Artificial Intelligence
基金 河北省自然科学基金资助项目(No.F2008000877)
关键词 流形对齐 拓扑结构 几何结构 协同过滤 Manifold Alignment, Topology Structure, Geometry Structure, Collaborative Filtering
  • 相关文献

参考文献5

  • 1Mehta B, Hofmann T. Cross System Personalization and Collaborative Filtering by Learning Manifold Alignments// Proe of the 29th Annual German Conference on Artificial Intenigenee. Bremen, Germany, 2006 : 244 - 259.
  • 2Ham J, Lee D, Saul L. Semisupervised Alignment of Manifolds// Proc of the 10th International Workshop on Artificial Intelligence and Statistics. Barbados, West Indies, 2005: 120-127.
  • 3谭璐,易东云,冯国柱,吴翊.局部不变投影[J].自然科学进展,2004,14(3):282-287. 被引量:10
  • 4Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation, 2003, 15 (6), 1373 - 1396.
  • 5Breese J S, Heckerman D, Kadie C M. Empirical Analysis of Pre-dictive Algorithms for Collaborative Filtering // Proc of the 14th Conference on Uncertainty in Artificial Intelligence. San Francisco, USA, 1998 : 43 - 52.

二级参考文献13

  • 1[1]Donoho D L. High-dimensional data analysis: The curses and blessings of dimensionality. Am Math Soc Conf, Los Angels, 2000http: //www-stat. stanford. edu/~ donoho/Lectures/AMS2000/Curses. pdf
  • 2[2]Enrique F, et al. Lose less coding through the concentration of measure phenomenon. AMS Subject Classification, May 2002http: //www. math. gatech. edu/~ houdre/research/papers/lossless. pdf
  • 3[3]K' egl Bal'azs. Intrinsic dimension estimation using packing numbers. Neural Information Processing Systems, December 2002http: //www. cse. msu. edu/~ lawhiu/manifold
  • 4[4]Belman, et al. Adaptive Control Processes: A Guided Tour.Princeton: Princeton University Press, 2000
  • 5[5]Kevin B, et al. When is' nearest neighbor' meaningful? In: 7th International Conference on Database Theory (ICDT-1999),Jerusalem, Israel, 1999. 217http: //citeseer. nj. nec. com/beyer99when. html
  • 6[6]Chen Tsuhan, et al. Principle component analysis and its variants for biometrics. In: IEEE 2002 International Conference on Image Processing, 2002http: //amp. ece. cmu. edu/Publication/Wende/01037959. pdf
  • 7[7]Griffiths T L, et al. A multidimensional scaling approach to mental multiplication. Memory & Cognition, 2002, 30(1): 97
  • 8[8]Balakrishnama S, et al. Linear discriminant analysis - a brief tutorial. Institute for Signal and Information Processing, March 1998http: //www. isip. msstate. edu/publications/reports/isip- internal/1998/linear- discrim- analysis/Ida- theory- vi. 1. pdf
  • 9[9]Belkin M, et al. Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in Neural Information Processlng Systems 15, Vancouver, British Columbia, Canada, 2001http: //citeseer. nj. nec. com/belkin021aplacian. html
  • 10[10]Rowels S T, et al. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290:2323

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部