期刊文献+

非自治多种群时滞Kolmogorov系统的持续性和灭绝性

Persistence and Extinction in Nonautonomous Multi-species Kolmogorov System with Delay
原文传递
导出
摘要 研究非自治多种群时滞Kolmogorov系统,给出了该系统中种群持续和灭绝的充分条件,并把得到的结果应用于非自治时滞Lotka-Volterra系统.把相关文献的有关结果推广到时滞系统. A nonautonomous multi-species Kolmogorov system with delay is considered in this paper. Sufficient conditions are given for persistence and extinction of species in this system, and our results are applied to nonantonomous Lotka-Volterra systems with delay. It is shown that the results of R. Redheffer[-J. Math. Biol,2000,40,295-3203 are generalized to the delay systems.
出处 《数学的实践与认识》 CSCD 北大核心 2009年第15期122-127,共6页 Mathematics in Practice and Theory
基金 鲁东大学创新团队建设项目(08-CXB005)
关键词 非自治Kolmogorov系统 时滞 非自治Lotka—Volterra系统 持续性 灭绝性 nonautonomous kolmogorov system delay nonautonomous lotka-volterra system persistence extinction
  • 相关文献

参考文献6

  • 1Vance R R, Coddington E A. A nonautonomous model of population growth[J]. J Math Biol,1989,27:491-506.
  • 2Redheffer R. Generalized monotonieity, integral conditions and partial survival[J]. J Math Biol, 2000,40: 295-320.
  • 3赵建东,阮炯,付丽萍.非自治单种群时滞Kolmogorov系统的持续性和灭绝性[J].数学的实践与认识,2008,38(16):92-96. 被引量:1
  • 4Hale J. Theory of Functional Differential Equations[M]. New York Heidelberg Berlin, Pringer-Berlag, 1977.
  • 5Redheffer R. Increasing functions[J].Aequations Mathematicae, 1981,22 : 119-133.
  • 6Redheffer R. Nonautonomous Lotka-Volterra systems I[J].J Diff Eqs, 1996,127:519-541.

二级参考文献3

  • 1Vance R R, Coddington E A. A nonautonomous model of population growth[J]. J Math Biol, 1989,27:491-506.
  • 2Ray Redheffer. Generalized monotonicity,integral conditions and partial survival[J]. J Math Biol, 2000,40s 295- 320.
  • 3Hale J. Theory of Functional Differential Equations[M]. New York Heidelberg Berlin, Pringer-Berlag,1977.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部