期刊文献+

一类非线性泛函微分系统的概周期解

Almost Periodic Solutions for A Kind of Nonlinear Functional Differential System
原文传递
导出
摘要 结合应用指数型二分性原理和Schaefer定理,考虑了一类完全非线性泛函微分方程概周期解的存在性问题,改善和推广了已有的结果.并将获得的结果推广到周期系统,获得了一些新的结果. By using of exponential principal and Schaefer theorem, the existence of almost periodic solutions for almost periodic systems with deviating argument was investigated. The obtained results are improved and generalized. Later, we extend our results to the periodic systems, and get some new results.
出处 《数学的实践与认识》 CSCD 北大核心 2009年第15期169-176,共8页 Mathematics in Practice and Theory
基金 广西教育厅科研项目(200707MS049 200708LX163) 玉林师院重点科研项目(2009YJZD14)
关键词 泛函微分方程 概周期解 周期解 存在性 functional-differential equations almost periodic solutions periodic solutions the existence
  • 相关文献

参考文献10

  • 1Gopalsamy K, Trofimchuk S I. Almost periodic solutions of Lasota-Wazewska type delay differential equation[J].J Math Anal Appl,1999,237:573-582.
  • 2Liz E, Trofimchuk S. Existence and stability of almost periodic solutions for quasilinear delay system and the Halanay inequality[J]. J Math Anal Appl,2000,248:625-644.
  • 3Feng Chunhua, Wang Peiguang. The existence of almost periodic solutions of some delay differential equations[J]. Computers and Mathematics with Applications, 2004,47 : 1225-1231.
  • 4Fink A M. Almost Periodic Differential Equations[M]. Lecture Notes in Mathematics 377, Springer-Verlag, New-York, 1974.
  • 5郭大钧.非线性泛函分析(第二版)[M].济南:山东科学技术出版社,2003.
  • 6Zeng Weiyao. Periodic solution and almost periodic solution of differential in critical case[J].Ann of Diff Eqs, 1987,3(4):471-481.
  • 7Coppel W A. Dichotomies in Stability Theory[M]. Lecture Notes in Mathematics 377, Springer-Verlag, New- York, 1978.
  • 8Smart D R. Fixed Point Theorems[M]. Cambridge Univ Press, Cambridge, UK,1974.
  • 9陈凤德.指数型二分性和周期系统的周期解[J].纯粹数学与应用数学,1999,15(1):18-24. 被引量:13
  • 10马世旺,庾建设,王志成.具有周期扰动的泛函微分方程的周期解[J].科学通报,1998,43(13):1386-1389. 被引量:4

二级参考文献3

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部