期刊文献+

交联壳聚糖微球固定化β-葡萄糖苷酶工艺研究 被引量:4

Study of the Immobilization of β-Glucosidase onto Cross-linked Chitosan Microsphere
下载PDF
导出
摘要 目的:以戊二醛交联壳聚糖微球为载体,通过共价连接反应固定化β-葡萄糖苷酶。方法:以固定化酶比活和酶活回收率为目标,采用单因素方法优化固定化工艺、微球制备条件。结果:微球最佳制备条件:2.5%壳聚糖,2%乙酸,7.5%氢氧化钠,氢氧化钠:乙醇(v/v)=1∶1。最佳固定化工艺为:0.1g壳聚糖微球在20mL 3%戊二醛溶液中50℃交联2h。加酶量为7 388mU/g干球,25℃吸附24h。固定化酶比活为6 188mU/g干球,酶活回收率为95.4%。结论:交联壳聚糖微球共价连接法可有效固定化β-葡萄糖苷酶。 Objective: To optimize the immobilization of β- Glucosidase onto chitosan microsphere with glutaraldehyde. Method: Using activity of immobilized enzyme and activity recovery as response value, the effects of immobilization conditions and preparation conditions of cross - linked chitosan microsphere on immobilization were studied. Result:Tile optimal preparation conditions of chitosan microsphere were: 2.5 % chitosan, 2% acetic acid, 7.5% NaOH, the ratio of NaOH and ethonal(v/v) = 1 : 1. The optimal immobilization conditions were as following: 0. lg wet chitosan microspheres was treated with 20mL 3% glutaraldehyde at 50℃ for 2h, then glucosidase was incubated with the microspheres for 24h at 25℃ with an enzyme loading of 7 388mU/g dry microspheres, giving the activity and activity recovery of the immobilized glucosidase 6188mU/g dry carrier and 95.4%, respectively. Conclusion: β- Glucosidase was immobilized by covalent bonding and the enzyme exhibited a considerable affinity to chitosan, giving high activity recovery while maintaining an optimum level of activity.
出处 《生物技术》 CAS CSCD 北大核心 2009年第4期67-70,共4页 Biotechnology
基金 国家863计划项目("微波耦联非水相酶催化合成食品添加剂的集成技术" No.2006AA10Z310)资助
关键词 交联 壳聚糖 固定化 Β-葡萄糖苷酶 cress- link chitosan immobilization β - glucosidase
  • 相关文献

参考文献20

  • 1郁惠蕾,许建和,林国强.糖苷水解酶在糖苷合成中的应用概况[J].有机化学,2006,26(8):1052-1058. 被引量:17
  • 2毛多斌,黄顺利,陈永森.生物催化在糖苷合成中的应用[J].日用化学工业,2007,37(5):321-326. 被引量:9
  • 3Ducret A, Carriere JF, Tr, mi M, et al. Enzymatic synthesis of octyl glucoside catalyzed by almond ,8 - glucosidase in organic media[J]. Can. J. Chem, 2002, 80: 653- 656.
  • 4Kurashima K, Fujii M, Ida Y, et al. Enzymatic β- glycosidation of primary alcohols[J]. J. Mol. Catal. B: Enzym, 2003, 26: 87-98.
  • 5Akita H, Kawahara E, Kislfida M, et al. Synthesis of naturally occurring glueopyranoside based on enzymatic - glycosidation[J]. J. Mol. Catal. B: Enzym, 2006, 40: 8- 15.
  • 6Balogh T, Boross and Kosdry J. Novel reaction systems for the synthesis of O - glucosides by enzymatic reverse hydrolysis [ J ]. Tetrahedron Lett, 2004, 60:679 - 682.
  • 7Nagatomo H, Matsushita Y, Sugamoto K. Preparation and Properties of Gelatin - Immobilized Glucosidase from Pyrococcus furiosus[J]. Biosci. Biotechnol. Biochem, 2005, 69(1): 128-136.
  • 8Gargouri M, Smaali I, Maugant T, et al. Fungus β-glycosidases: immobiliz, ation and um in alkyl β- glycoside synthesis[J]. J. Mol. Catal B: Enzym, 2004, 29: 89- 94.
  • 9Wen - Ya Lu, Guo - Qiang Lin, Hui - Lei Yu, el al. Facile synthesis of alkylβ - D - glucopyranesides from D - glucose and the corresponding alcohols using fruit seed meds[J]. J. Moi. Catal B: Enzym, 2007, 44:72 - 77.
  • 10Spagna G, Barbagallo RN, Pifferi PC., et al. Stabilization of a β- glucosidase from AspergiUus niger by binding to an amine agarose gel[J]. J. Mol. Calal B: Enzym, 2000, 11 : 63 - 69.

二级参考文献85

共引文献49

同被引文献29

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部