期刊文献+

时变磁场下径向电涡流阻尼器的动力特性 被引量:9

Dynamic Performance of a Radial Eddy Current Damper under Variable-time Magnetic Field
下载PDF
导出
摘要 为了研究时变磁场和导体运动的组合效应对非旋转型径向电涡流阻尼器动力特性的影响,在一个径向电涡流阻尼器柔性转子系统上测量不同正弦激励磁场强度和频率条件下转子系统在恒速运行时的运动轨道以及在慢加速运动过程中的不平衡响应。结果说明正弦激励磁场的频率对径向电涡流阻尼器的动力特性有着显著的影响。随着正弦激励磁场频率的增大,径向电涡流阻尼器的减振能力迅速减小。对于给定的正弦激励磁场强度,存在着一个能够影响阻尼器特性的最大正弦激励磁场频率;而对于给定的正弦激励磁场频率,存在着一个能够影响阻尼器特性的最低正弦激励磁场强度。只要正弦激励磁场的频率小于最大正弦激励磁场频率或者正弦激励磁场的强度大于最低正弦激励磁场强度,径向电涡流阻尼器的特性同样可以用正弦激励磁场来控制,否则正弦激励磁场对径向电涡流阻尼器的特性几乎没有影响。按照转子动力学的观点,非时变磁场控制的径向电涡流阻尼器的动力特性优于时变磁场控制时的动力特性。 In order to study the combination effect of the variable-time magnetic field and the conductor motion on the dynamic behavior of a non-rotational radial eddy current damper, the rotor motion orbits at steady state rotational speeds and the rotor unbalance responses in the slowly accelerating operation at different sinusoidal magnetic flux densities and the magnetic field frequencies are experimentally studied on the flexible rotor system of a radial eddy current damper. It is shown that the frequency of sinusoidal magnetic field has a significant effect on the dynamic behavior of the radial eddy current damper. With the increase of frequency of sinusoidal magnetic field, the damping capability of radial eddy current damper decreases rapidly. There is a maximum frequency of sinusoidal magnetic field for a given magnetic field strength or a minimum strength of sinusoidal magnetic field for a given frequency of sinusoidal magnetic field to affect the dynamic behavior of the eddy current damper. If the frequency of sinusoidal magnetic field is less than the maximum frequency or the strength of sinusoidal magnetic field is over the minimum magnetic field strength, the dynamic behavior of the radial eddy current damper can also be controlled by application of an external sinusoidal magnetic field, otherwise the dynamic behavior of the radial eddy current damper is the same as that without exciting magnetic field. In the view of rotor dynamics, it is better to use invariable-time magnetic field instead of variable-time magnetic field to change the dynamic behavior of radial eddy current damper.
作者 祝长生
出处 《机械工程学报》 EI CAS CSCD 北大核心 2009年第8期31-36,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金(10772160) 中国航空科学基金(02C24007,05C24005)资助项目
关键词 电涡流阻尼器 时变电磁场 转子 转子动力学 振动 Eddy current damper Variable-time magnetic field Rotor Rotor dynamics Vibration
  • 相关文献

参考文献17

  • 1SODANO H A, BAE J S. Eddy current damping in structures[J]. The Shock and Vibration Digest, 2004, 36(6): 469-478.
  • 2GUNTER E J, HUMPHRIS R R, SEVERSON S J. Design study of magnetic eddy-current vibration suppression dampers for application to cryogenic turbomachinery[R]. NASA, 1983, CR-173273: 1-6.
  • 3CUNNINGHAM R E. Preliminary results on passive eddy-current damper technology for SSME turbomachinery[R]. NASA, 1984, CP-2372: 366-380.
  • 4DIRUSSO E, BROWN G V. Experimental evaluation of a tuned electromagnetic damper for vibration control of cryogenic turbopump rotors [R]. NASA, 1990, TP-3005.
  • 5NIKOLAJSEN J L. A magnetic bearing based on eddy-current repulsion[C]//Proceedings of Rotordynamic Instability Problems in High-performance Turbomachinery, 1986, NASA CP-2443: 461-466.
  • 6NIKOLAJSEN J L. Experimental verification of an eddy-current bearing[C]//Proceedings of Rotordynamic Instability Problems in Highperformance Turbomachinery, 1988, NASA, CP-3026: 389-393.
  • 7CONNOR K A, TICHY J A. Analysis of an eddy current journal bearing[J]. Journal of Tribology, 1988, 110: 320-326.
  • 8TICHY J A, CONNOR K A. Geometric effects on eddy current bearing performance[J]. Journal of Triboligy, 1989, 111(2): 209-214.
  • 9TING L, TICHY J A. Stiffness and damping of an eddy current magnetic bearing[J]. Journal of Triboligy, 1992, 114: 600-605.
  • 10FREDERICK J R, DARLOW M S. Operation of an electromagnetic eddy current damper for a super-critical shaft[J]. Journal of Vibration and Acoustics, 1994, 116:578-589.

二级参考文献16

  • 1Biro O, Preis K. On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents [J].Trausactious on Magnetics, 1989, 25(4): 3154-3159.
  • 2Simonyi K, Theoretische elektrotechnik [M]. Berlin: VEB Deetscher Verlag der Wissenschaften, 1979.
  • 3Tegopoulos J A, Kriezis E E. Eddy current in linear conducting media[M]. Amsterdam: Elsevier Science Publishing Company Inc., 1985.
  • 4祝长生.旋转机械转子的电涡流阻尼装置:中国,ZL2004 2 0109716.7[P].2004-11-07.
  • 5SODANO H A, BAE J S. Eddy current damping in structures[J]. The Shock and Vibration Digest, 2004, 36(6): 469-478.
  • 6GUNTER E J, HUMPHRIS R R, SEVERSON S J. Design study of magnetic eddy-current vibration suppression dampers for application to cryogenic turbomachinery[R]. NASA, 1983, CR-173273: 1-6.
  • 7CUNNINGHAM R E. Preliminary results on passive eddy-current damper technology for SSME turbomachinery[R]. NASA, 1984, CP-2372:366-380.
  • 8DIRUSSO E, BROWN G V. Experimental evaluation of a tuned electromagnetic damper for vibration control of cryogenic turbopump rotors[R]. NASA, 1990: TP-3005.
  • 9NIKOLAJSEN J L. Experimental verification of an eddycurrent bearing[C]//Proc, of Rotordynamic Instability Problems in High-performance Turbomachinery, NASA, 1988: 389-393.
  • 10CONNOR K A, TICHY J A. Analysis of an eddy current journal bearing[J]. J. of Tribology, 1988, 110: 320-326.

共引文献39

同被引文献65

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部