期刊文献+

基于小波包分析的液压泵状态监测方法 被引量:50

Wavelet Packets Analysis Based Method for Hydraulic Pump Condition Monitoring
下载PDF
导出
摘要 液压泵是液压系统中的关键部件,对其运行状态的监测与故障诊断对整个液压系统的可靠性具有重要意义。基于小波包分解和小波系数残差分析方法,提出一种利用液压泵出口压力进行液压泵故障诊断的方法。通过分析液压泵出口处压力信号的特征,利用小波包对压力信号进行频谱分解,提取液压泵的故障特征,建立不同频率范围的特征信号与液压泵不同故障因素的对应关系,为液压泵的故障诊断与定位提供依据。利用小波包能量残差判别液压泵的运行健康状态,并比较不同小波基函数在故障诊断时的敏感度。为减小小波分析时边界效应所引起的信号畸变,引入"滑动双窗口"的分析方法。试验结果表明,与快速傅里叶方法相比,基于小波包分解的残差分析方法可有效提高故障诊断的准确率,实现对液压泵的状态监测与故障诊断。 The hydraulic pump is a key component in hydraulic system. Monitoring its operation state and carrying out fault diagnosis are of important significance to the reliability of the whole hydraulic system. Based on the wavelet packet decomposition (WPD) and wavelet coefficients residual analysis method, the fault diagnosis approach by employing the outlet pressure of the pump is proposed for the condition monitoring of hydraulic pump. By analyzing the characteristic of the discharge pressure of the hydraulic pump, the wavelet packet analysis is applied to the pressure signal to extract the feature spectrum of the hydraulic pump. The relationships of the feature signals in different frequency bands corresponding to the different fault factors are established. The wavelet packet energy residuals are then used to diagnose the pump health status. The sensitivities of the fault diagnosis with different wavelet function are also discussed. For eliminating the border distortions in WPD, a twin sliding window scheme is created to improve the performance of the diagnosing system. The validating test results show that this WPD and residual analysis based method can effectively improve the accuracy of fault diagnosis in comparison to the conventional fast Fourier transform (FFT) method.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2009年第8期80-88,共9页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(69872031)
关键词 故障诊断 液压泵 小波包分解 信号处理 残差分析 Fault diagnoses Hydraulic pump Wavelet packet decomposition Signal processing Residual analysis
  • 相关文献

参考文献5

二级参考文献41

  • 1陈章位,路甬祥,傅周东.液压设备状态监测和故障诊断技术[J].液压与气动,1995,19(2):3-7. 被引量:49
  • 2Szu H, Sheng Y, Cheng J. Wavelet transform as a bank of matched filters. Applied Optics, 1992, 31(6): 3 267~3 277.
  • 3Vetterli M, Herley C. Wavelets and filter bank: theory and design. IEEE Trans. on Signal Processing, 1992, 40(9):2 207~2 232.
  • 4Liu S, Hung James C. Pulsating parameter methord for fault diagnosis for a hydraulic pump. In IECON'91,2 145~2 150.
  • 5Wang W J, McFadden P D. Application of the wavelet transform to gearbox vibration analysis. The ASME Structure Dynamics & Vibration, 1993, 42(6): 233~251.
  • 6Wang W J, McFadden P D. Application of the wavelets in nonstationary vibration signal analysis for early gear damage diagnosis. In Int. Conf. on Vibration Engineering,Beijing, China, 1994:80~85.
  • 7Angeli C, Chatzinikolaou A. An expert system approach to fault diagnosis in hydraulic systems. Expert System, 1995,12(4):323~329.
  • 8Julie M. Research into a sensor-based diagnostic maintenance expert system for the hydraulic subsystem of a continuous mining machine. IEEE Trans. on industry application,1991, 5:1 192~1 199.
  • 9Newland D E. Wavelet analysis of vibration. Part 1: theory trans. ASME Journal of Vibration and Acoustics, 1994,116:417~425.
  • 10Szu H, Telfer B, Garcia J.Wavelet transform and neural networks for compression and recognition. Neural Networks, 1996,9(4): 695~708.

共引文献131

同被引文献436

引证文献50

二级引证文献317

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部