期刊文献+

基于Nataf变换的载荷相关系统风险预测方法 被引量:5

Method for Syetem Risk Prediction with Load Dependency Based on Nataf Transformation
下载PDF
导出
摘要 以元件安全裕度为基本随机量,基于Nataf变换建立载荷相关系统共因失效概率定量分析的非经验模型,实现原始概率空间向独立标准正态空间的映射,从而把共因元件组的联合失效概率值转化成一维标准正态积分的乘积。针对系统低阶共因失效数据已知而系统载荷分布及元件强度分布未知的现实条件,提出载荷相关系统风险预测的实用方法。该模型与方法直接体现共因失效内在机理,克服传统模型过多依赖历史数据或主观经验而忽略共因失效发生及作用规律的局限,为复杂系统风险数据分析及概率预测提供了新途径。 An un-empirical model for probability quantitative analysis of common cause failures is demonstrated that utilizes Nataf transformation approach based on safety margin variables of components in a common cause group. The joint failure probability is figured out by multiplying the products of the individual integration in an independent, normal space. In view of the fact that the data of system low-order common cause failure are known while the system load distribution and components strength distribution are unknown, a practical method for risk prediction of load-dependency systems is put forward. The proposed model and method embody the inherent mechanism of common cause failures and overcome the limitation of traditional model which excessively relies on historical data or subjective experience while neglects the occurrence and action rule of common cause failures. The proposed method provides complicated systems with a new way to risk data analysis and failure probability prediction.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2009年第8期137-141,共5页 Journal of Mechanical Engineering
基金 国家自然科学基金(50805070) 江苏技术师范学院基础及应用基础研究资助项目
关键词 可靠性 风险预测 载荷相关 共因失效 Nataf变换 System reliability Risk prediction Load dependence Common cause failure Nataf transformation
  • 相关文献

参考文献14

  • 1MICHELA G, ANGELA E. Random, systematic, and common cause failure: How do you manage them? [J]. Process Safety Progress, 2006, 25(4): 331-338.
  • 2FLEMING K N, HUNNAMAN G W. Common cause failure considerations in predicting HTGR cooling system reliability[J]. IEEE Transaction on Reliability , 1976,25: 171-177.
  • 3FLEMING K N, MOSLEH A, DEREMER R K. A systematic procedure for the incorporation of common cause events into risk and reliability models[J]. Nuclear Engineering and Design, 1986, 93: 245-273.
  • 4ATWOOD C L. The binomial failure rate common cause model[J]. Techno. Metrics, 1986, 28(2): 139-148.
  • 5HAUPTMANNS U. The multi-class binomial failure rate model[J]. Reliability Engineering and System Safety, 1996, 53(3): 85-90.
  • 6XIE L Y, ZHOU J Y. System-level load-strength interference based reliability modeling of k-out-of-n system [J]. Reliability Engineering and System Safety, 2004, 84(3): 311-317.
  • 7NATAF A. Determination des distribution don't les marges sont donnees[J]. Comptes Rendus de l'Academie des Sciences, 1962, 225: 42-43.
  • 8DER KUREGHIAN A, LIU P L. Structural reliability under incomplete probability information[J]. Journal of Engineering Mechanics, 1986, 112(1): 85-104.
  • 9张义民,王顺,刘巧伶,闻邦椿.具有相关失效模式的多自由度非线性结构随机振动系统的可靠性分析[J].中国科学(E辑),2003,33(9):804-812. 被引量:45
  • 10WALLACE J M, MAVRIS D N, SCHRAGE D P. System reliability assessment using covariate theory[C]//IEEE Transaction on RAMS, 2004: 18-24.

二级参考文献22

  • 1张义民,林逸,刘巧伶.当联合概率密度未知时随机结构可靠性分析的随机有限元法[J].吉林工业大学学报,1993,23(4):9-14. 被引量:3
  • 2张义民 刘巧伶.多随机参数结构可靠性分析的随机有限元法[J].东北工学院学报,1992,13:97-99.
  • 3张义民.动态随机结构系统的可靠性分析[M].长春:吉林科学技术出版社,2000.15~22.
  • 4Ang A H-S, Tang W H. Probability Concepts in Engineering Planning and Design. New York: John Wiley & Sons, 1984.
  • 5Vanmarcke E, Shinozuka M, Nakagiri S, et al. Random fields and stochastic finite element methods. Structural Safety, 1986, 3:143-166.
  • 6Ibrahim R A. Structural dynamics with uncertainties. Applied Mechanics Review, 1987, 15(3): 309-328.
  • 7Benaroya H, Rebak M. Finite element methods in probabilistic structural analysis: a selective review. Applied Mechanics Review, 1988, 41:201-213.
  • 8Ma F. Extension of second moment analysis to vector-valued and matrix-valued functions. International Journal of Non-Linear Mechanics, 1987, 22:251-260.
  • 9Zhang Y M, Cen S H, Liu Q L, et al. Stochastic perturbation finite elements. Computers & Structures, 1996, 59(3): 425-429.
  • 10Zhang Y M, Wen B C, Cen S H. PFEM formalism in Kronecker notation. Mathematics and Mechanics of Solids, 1996, 1(4):445 - 461.

共引文献44

同被引文献51

引证文献5

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部