摘要
借鉴Elman和Jordan神经网络的特点,构造了一种新的动态神经网络.该网络能对隐含层的历史进行状态记忆,实时调整过去的信号对现在值的影响,并且增加了输出层节点的反馈以增强神经网络的信号处理能力.将基于遗传算法(GA)和误差反传算法(BP)的混合学习算法用于神经网络权值的修改,既可提高收敛速度又能避免陷于局部极小值.最后,将改进的神经网络应用于水下机器人动力学模型辨识,仿真结果表明,基于混合学习算法的神经网络提高了学习的收敛速度和辨识精度.
A new dynamic neural network is constructed by borrowing ideas from Elman and Jordan neural networks. The new network can remember the history state of hidden layer and tune the effect of the past signal to the current value real-timely And in the presented network, the feedback of output layer nodes is increased to enhance the ability of handling signals. A hybrid learning algorithm based on Genetic algorithm (GA) and error back propagation algorithm (BP) is used to tune the weight values of the network, which can accelerate the rate of convergence and avoid getting into local extremum. Finally, the improved neural network is utilized to identify the A UV hydrodynamic model, and the simulation results show that the neural network based on hybrid learning algorithm improves the learning rapidity of convergence and identification precision.
出处
《船舶工程》
CSCD
北大核心
2009年第4期59-62,共4页
Ship Engineering
基金
哈尔滨工程大学基础研究基金资助(HEUFT08017
08001)
水下智能机器人技术国防科技重点实验室项目(2007001)
关键词
水下机器人
系统辨识
神经网络
遗传算法
误差反传算法
underwater robot
system identification
neural network
genetic algorithm
back propagation algorithm