期刊文献+

基于混合学习算法的水下机器人神经网络辨识 被引量:2

Neural network identification of underwater robot based on hybrid learning algorithm
下载PDF
导出
摘要 借鉴Elman和Jordan神经网络的特点,构造了一种新的动态神经网络.该网络能对隐含层的历史进行状态记忆,实时调整过去的信号对现在值的影响,并且增加了输出层节点的反馈以增强神经网络的信号处理能力.将基于遗传算法(GA)和误差反传算法(BP)的混合学习算法用于神经网络权值的修改,既可提高收敛速度又能避免陷于局部极小值.最后,将改进的神经网络应用于水下机器人动力学模型辨识,仿真结果表明,基于混合学习算法的神经网络提高了学习的收敛速度和辨识精度. A new dynamic neural network is constructed by borrowing ideas from Elman and Jordan neural networks. The new network can remember the history state of hidden layer and tune the effect of the past signal to the current value real-timely And in the presented network, the feedback of output layer nodes is increased to enhance the ability of handling signals. A hybrid learning algorithm based on Genetic algorithm (GA) and error back propagation algorithm (BP) is used to tune the weight values of the network, which can accelerate the rate of convergence and avoid getting into local extremum. Finally, the improved neural network is utilized to identify the A UV hydrodynamic model, and the simulation results show that the neural network based on hybrid learning algorithm improves the learning rapidity of convergence and identification precision.
出处 《船舶工程》 CSCD 北大核心 2009年第4期59-62,共4页 Ship Engineering
基金 哈尔滨工程大学基础研究基金资助(HEUFT08017 08001) 水下智能机器人技术国防科技重点实验室项目(2007001)
关键词 水下机器人 系统辨识 神经网络 遗传算法 误差反传算法 underwater robot system identification neural network genetic algorithm back propagation algorithm
  • 相关文献

参考文献7

  • 1FOSSEN,T., Nonlinear Modeling and Control of Underwater Vehicle[D]. Dr.Eng. Thesis, Norwegian Institute of Technology, Trondheim, 1991.
  • 2Van De Ven, Pepijn; Flanagan, Colin; Toal, Daniel; Omerdic, Edm. Identification and control of underwater vehicles with the aid of neural networks[C]//'2004 IEEE Conference on Robotics, Automation and Mechatronics. Singapore, 2004.
  • 3KIshii, T.Ura and T.Fujii, Feed Forward Neural Network for Identification and Adaptive Conlxol of Autonomous Underwater Vehicles[C]//Proceedings of the 1994 IEEE International Conference on Neural Networks. Orlando, FL, USA, 1994.
  • 4Kumpati S. Narendra and Kannan Parthasarathy, Identification and Control of Dynamical System Using Neural Networks[J]. IEEE Tram Neural Networks, 1990, 1(1): 4-27.
  • 5王保中,康立山,何巍.基于实数编码遗传算法的多层神经网络BP算法[J].武汉大学学报(自然科学版),1998,44(3):289-291. 被引量:27
  • 6周明,孙树栋.遗传算法原理及运用[M].北京:国防工业出版社,1999.
  • 7王凌.智能优化算法[M].北京:清华大学出版社,2001:17-33

二级参考文献4

共引文献33

同被引文献18

  • 1张代兵,谢海斌,林龙信,沈林成.柔性长鳍仿生水下推进器测控系统的设计与实现[J].计算机测量与控制,2007,15(2):205-207. 被引量:3
  • 2蔡金锭,付中云.粒子群神经网络混合算法在负荷预测中的应用[J].高电压技术,2007,33(5):90-93. 被引量:14
  • 3AbhijitSPandya RobertB Macy 徐勇 荆涛 译.神经网络模式识别及其实现[M].北京:电子工业出版社,1999..
  • 4Pepijn W J Van De Ven,Tor A Johansen,et al. Neural network augmented identification of underwater vehicle models[J].Control Engineering Practice, 2007, ( 15 ) : 715--725.
  • 5Kennedy J, Eberhart R C. Particle swarm optimization [A]. Proc. IEEE International Conference on Neural Network[C~.].Perth, Australia, 1995. 1942-1948.
  • 6Ott C, Albc-Schaer A, Kugi A, et al. On the passivity-based im- pedance control of flexible Joint robots [J]. IEEE Trans-actions on Robotics, 2008, 24 (2) : 416 -429.
  • 7Lic H, Meusel P, Hirzinger G, et al. The modular multi-sensory DLR-HIT- Hand: hardware and software architecture [J]. IEEE/ASML, Transactions on Mechatronics, 2008, 13 (4) : 461 - 469.
  • 8Bekiroglu Y, Laaksonen J, Jorgensen J A, et al. Assessing grasp stability based on learning and haptic data [J]. IEEE Transactions on Robotics, 2011, 27 (3): 616-629.
  • 9Lorine M, Bela L. Control of robotic systems with unknown fric- tion and payload [J]. IEEE Transactions on Control Systems Technology, 2011, 19 (6) : 1534 - 1539.
  • 10Shafiqul I, Liu X P. Robust sliding mode control for robot manipu- lators [J]. IEEE Transactions on Industrial Eleetronies, 2011, 58 (6) : 2444 -2453.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部