期刊文献+

Blow-up vs.Global Finiteness for an Evolution p-Laplace System with Nonlinear Boundary Conditions

Blow-up vs.Global Finiteness for an Evolution p-Laplace System with Nonlinear Boundary Conditions
下载PDF
导出
摘要 In this paper, the authors consider the positive solutions of the system of the evolution p-Laplacian equationswith nonlinear boundary conditionsand the initial data (u0, v0), where Ω is a bounded domain in Rn with smooth boundary δΩ, p 〉 2, h(·,·) and s(·,· ) are positive C1 functions, nondecreasing in each variable. The authors find conditions on the functions f, g, h, s that prove the global existence or finite time blow-up of positive solutions for every (u0, v0). In this paper, the authors consider the positive solutions of the system of the evolution p-Laplacian equationswith nonlinear boundary conditionsand the initial data (u0, v0), where Ω is a bounded domain in Rn with smooth boundary δΩ, p 〉 2, h(·,·) and s(·,· ) are positive C1 functions, nondecreasing in each variable. The authors find conditions on the functions f, g, h, s that prove the global existence or finite time blow-up of positive solutions for every (u0, v0).
机构地区 School of Mathematics
出处 《Communications in Mathematical Research》 CSCD 2009年第4期309-317,共9页 数学研究通讯(英文版)
基金 The NSF(10771085)of China the Key Lab of Symbolic Computation and Knowledge Engineering of Ministry of Education the 985 program of Jilin University
关键词 nonlinear boundary value problem evolution p-Laplace system BLOWUP nonlinear boundary value problem, evolution p-Laplace system, blowup
  • 相关文献

参考文献11

  • 1Rossi, J. D., The blow-up rate for a system of heat equations with non-trivial coupling at the boundary, Math. Methods Appl. Sci., 20(1997), 1-11.
  • 2Walter, W., On Existence and non-existence in the large of solutions of parabolic differential equation with a nonlinear boundary condition, SIAM J. Math. Anal., 6(1975), 85--89.
  • 3Mu, C. L., Blow-up for a class of nonlinear parabolic equation, J. Fudan Univ. Nat. Sci., 33(1994), 292-302.
  • 4Filo, J. and Kacur, J., Local existence and uniqueness of solutions of degenerate parabolic equations, Nonlinear Anal., 24(1995), 1597-1618.
  • 5Anderson, J. R., Local existence and uniqueness of solutions of degenerate parabolic equations, Comm. Partial Differential Equations, 16(1991), 105-143.
  • 6Acosta, G. and Rossi, J. D., Blow-up vs. global existence for quasilinear parabolic systems with a nonlinear boundary condition, Z. Angew. Math. Phys., 48(1997), 711-724.
  • 7Gomez, J. L., Marquez, V. and Wolanski, N., Blow-up results and localization of blow-up points for the heat equation with a nonlinear boundary condition, J. Differential Equations, 92(1991), 384--401.
  • 8Ambler, G. K., The Maximum Principle in Elliptic Equations, Final Year Project, University of Bristol, Bristol, 1998.
  • 9Alessandrini, G. and Garofalo, N., Symmetry for degenerate parabolic equations, Arch. Rationed Mech. Anal., 108(1989), 161-174.
  • 10DiBenedetto, E., Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部