期刊文献+

某型滚动轴承故障与分形维数的确立 被引量:3

Fault Diagnosis of a Bearing Based on Chaos and Fractal Theory
下载PDF
导出
摘要 针对轴承传动本身具有非线性而在传统故障诊断中又被忽略掉的问题,运用最大李雅普诺夫指数进行齿轮箱轴承运行混沌状态的辨识,然后采用关联维数对轴承故障进行准确定位。通过实验获取齿轮箱轴承的外圈故障、内圈故障、滚动体故障和正常状态的振动信号,并进行小波包去噪,对去噪信号分别计算各种状态下的最大李雅普诺夫指数和关联维数,得出各故障状态下对应的混沌状态和分形维数,可将此分形维数作为特征向量进行轴承故障诊断。在进行系统状态辨识和关联维数计算的同时讨论了嵌入维数、延迟时间和无标度区的确定方法。 Aiming at the non-linearity which exists in the bearing transmission but is ignored in the traditional fault diagnosis methods, the max-Lyapunov exponent was calculated in order to judge the system state of chaos firstly, then the correlation dimensions was calculated for the sake of judging the fault type. Some experimentation were carded out on a gear case, and the vibrating signals under normal working conditions and fault working conditions including outside-rolling fault, inside-rolling fault and roll fault were acquired. The system state of chaos and fractal dimensions were obtained according to the calculation results after getting rid of the noise in the original signals. The experimentation shows that fractal dimensions can be used as the fault character parameter for fault diagnosis. In addition, the embedding dimension, delaying time are also studied in this paper.
机构地区 军械工程学院
出处 《机械科学与技术》 CSCD 北大核心 2009年第9期1147-1152,共6页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(550775219)资助
关键词 轴承 故障诊断 最大李雅普诺夫指数 关联维数 混沌 bearing fault diagnosis max-Lyapunov exponent correlation dimensions chaos
  • 相关文献

参考文献5

二级参考文献14

  • 1程军圣,于德介,邓乾旺,杨宇,张邦基.时间-小波能量谱在滚动轴承故障诊断中的应用[J].振动与冲击,2004,23(2):34-36. 被引量:31
  • 2于德介,程军圣,杨宇.基于EMD和AR模型的滚动轴承故障诊断方法[J].振动工程学报,2004,17(3):332-335. 被引量:47
  • 3杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:145
  • 4康海英.基于阶次跟踪的自行火炮变速箱性能检测与故障诊断研究[D].石家庄:军械工程学院火炮工程系,2005.
  • 5Fyfe K R,Muncked S.Analysis of computed order tracking[J].Mechanical Systems and Signal Processing,1997,11(2):187-205.
  • 6李辉.基于瞬态过程分析的齿轮箱故障诊断研究[D].石家庄:军械工程学院火炮工程系,2005.
  • 7Z.K.Peng,Peter W.Tse,F.L.Chu.An improved Hilbert Huang transform and its application in vibration signal analysis[J].Journal of Sound and Vibration,2005,286:187-205.
  • 8N.E.Huang,Z.Shen,S R.Long,M.Wu,H.Shih,et al.The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis[J].Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences,1998,454:903-995.
  • 9Z.Peng,P.Tse,F.Chu.A comparison study of improved Hilbert Huang transform and wavelet transform:application to fault diagnosis for rolling bearing[J].Mechanical Systems and Signal Processing,2005,19:974-988.
  • 10Marcus Datig,Torsten Schlurmann.Performance and limitation of the Hlibert Huang transformation(HHT) with an application to irregular water waves[J].Ocean Engineering,2004,31:1783-1834.

共引文献20

同被引文献41

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部